# -*- coding: utf-8 -*- # #@TODO: Recheck all from __future__ import division import Image import ImageDraw import cStringIO import math import operator import urllib from module.plugins.internal.OCR import OCR class ImageSequence: def __init__(self, im): self.im = im def __getitem__(self, ix): try: if ix: self.im.seek(ix) return self.im except EOFError: raise IndexError # end of sequence class CircleCaptcha(OCR): __name__ = "CircleCaptcha" __type__ = "ocr" __version__ = "1.06" __status__ = "testing" __description__ = """Circle captcha ocr plugin""" __license__ = "GPLv3" __authors__ = [("Sasch", "gsasch@gmail.com")] _DEBUG = False pointsofcirclefound = [] BACKGROUND = 250 BLACKCOLOR = 5 def clean_image(self, im, pix): cleandeep = 1 imageheight = xrange(1, int(im.size[1])) imagewidth = xrange(1, int(im.size[0])) howmany = 0 curcolor = self.BACKGROUND for y in imageheight: jump = True howmany = 0 for x in imagewidth: curpix = pix[x, y] if curpix > self.BACKGROUND: if howmany <= cleandeep and howmany > 0: #: Clean pixel for ic in xrange(1, cleandeep+1): if x -ic > 0: pix[x-ic, y] = self.BACKGROUND jump = False howmany = 0 curcolor = curpix # self.log_debug(x, y, jump, 2) else: if howmany is 0: #: Found pixel jump = True howmany = howmany + 1 curcolor = curpix # self.log_debug(x, y, jump, 2) else: howmany = howmany + 1 if howmany is 1: #: Clean pixel pix[x-1, y] = self.BACKGROUND curcolor = self.BACKGROUND for x in imagewidth: jump = True howmany = 0 for y in imageheight: curpix = pix[x, y] # if jump is True: if curpix > self.BACKGROUND: if howmany <= cleandeep and howmany > 0: #: Clean pixel for ic in xrange(1, cleandeep+1): #: raw_input('2'+str(ic)) if y-ic > 0: pix[x, y-ic] = self.BACKGROUND jump = False howmany = 0 curcolor = curpix # self.log_debug(x, y, jump) else: if howmany is 0: #: Found pixel jump = True howmany = howmany + 1 curcolor = curpix # self.log_debug(x, y, jump) else: howmany = howmany + 1 if howmany is 1: #: Clean pixel pix[x-1, y] = self.BACKGROUND #: return -1 def find_first_pixel_x(self, im, pix, curx, cury, color = -1, ExitWithBlack = False): imageheight = xrange(1, int(im.size[1])) imagewidth = xrange(curx+1, int(im.size[0])) jump = True newx = (-1, -1) blackfound = 0 for x in imagewidth: curpix = pix[x, cury] if curpix < self.BLACKCOLOR: blackfound = blackfound + 1 if ExitWithBlack is True and blackfound >= 3: break #: Exit if found black else: continue if curpix >= self.BACKGROUND: #: Found first pixel white jump = False continue if (curpix < self.BACKGROUND and color == -1) or (curpix is color and color > -1): if jump is False: #: Found pixel curcolor = curpix newx = x, curcolor break return newx def find_last_pixel_x(self, im, pix, curx, cury, color = -1, ExitWithBlack = False): imageheight = xrange(1, int(im.size[1])) imagewidth = xrange(curx+1, int(im.size[0])) newx = (-1, -1) blackfound = 0 for x in imagewidth: curpix = pix[x, cury] if curpix < self.BLACKCOLOR: blackfound = blackfound + 1 if ExitWithBlack is True and blackfound >= 3: break #: Exit if found black else: continue if curpix >= self.BACKGROUND: if newx != (-1, -1): #: Found last pixel and the first white break if (curpix < self.BACKGROUND and color == -1) or (curpix is color and color > -1): #: Found pixel curcolor = curpix newx = x, curcolor return newx def find_last_pixel_y(self, im, pix, curx, cury, DownToUp, color = -1, ExitWithBlack = False): if DownToUp is False: imageheight = xrange(int(cury)+1, int(im.size[1])-1) else: imageheight = xrange(int(cury)-1, 1, -1) imagewidth = xrange(int(curx), int(im.size[0])) newy = (-1, -1) blackfound = 0 for y in imageheight: curpix = pix[curx, y] if curpix < self.BLACKCOLOR: blackfound = blackfound + 1 if ExitWithBlack is True and blackfound >= 3: break #: Exit if found black else: continue if curpix >= self.BACKGROUND: if newy != (-1, -1): #: Found last pixel and the first white break if (curpix < self.BACKGROUND and color == -1) or (curpix is color and color > -1): #: Found pixel curcolor = curpix newy = y, color return newy def find_circle(self, pix, x1, y1, x2, y2, x3, y3): #: Trasposizione coordinate #: A(0, 0) B(x2-x1, y2-y1) C(x3-x1, y3-y1) #: x**2+y**2+ax+bx+c=0 p1 = (0, 0) p2 = (x2-x1, y2-y1) p3 = (x3-x1, y3-y1) #: 1 c=0 #: 2 #: p2[0]**2+a*p2[0]+c=0 #: a*p2[0]=-1*(p2[0]**2-c) #: a=(-1*(p2[0]**2-c))/p2[0] a=(-1*(p2[0]**2-c))/p2[0] #: 3 #: p3[0]**2+p3[1]**2+a*p3[0]+b*p3[1]+c=0 #: b*p3[1]=-(p3[0]**2+p3[1]**2+a*p3[0]+c) #: b=(-1 * (p3[0]**2+p3[1]**2+a*p3[0]+c)) / p3[1] b=(-1 * (p3[0]**2+p3[1]**2+a*p3[0]+c)) / p3[1] r=math.floor(math.sqrt((-1*(a/2))**2+(-1*(b/2))**2)) cx=math.floor((-1*(a/2))+x1) cy=math.floor((-1*(b/2))+y1) return cx, cy, r def verify_circle_new(self, im, pix, c): """ This is the MAIN function to recognize the circle returns: 1 -> Found closed circle 0 -> Found open circle -1 -> Not found circle -2 -> Found black position then leave position """ imageheight = xrange(int(c[1]-c[2]), int(c[1]+c[2])) imagewidth = xrange(int(c[0]-c[2]), int(c[0]+c[2])) min_ray = 15 max_ray = 30 exactfind = False howmany = 0 missing = 0 missingconsecutive = 0 missinglist = [] minX = 0 maxX = 0 minY = 0 maxY = 0 pointsofcircle = [] if (c[2] < min_ray) or (c[2] > max_ray): return -1 #: Check cardinal points (at least 3) (if found i have to leave this position) if pix[c[0] + c[2], c[1]] < self.BLACKCOLOR: return -2 if pix[c[0] - c[2], c[1]] < self.BLACKCOLOR: return -2 if pix[c[0], c[1] + c[2]] < self.BLACKCOLOR: return -2 if pix[c[0], c[1] - c[2]] < self.BLACKCOLOR: return -2 cardinalpoints = 0 if self.verify_point(im, pix, c[0] + c[2], c[1], True) is 1: cardinalpoints = cardinalpoints + 1 if self.verify_point(im, pix, c[0] + c[2], c[1], False) == -1: return -2 if self.verify_point(im, pix, c[0] - c[2], c[1], True) is 1: cardinalpoints = cardinalpoints + 1 if self.verify_point(im, pix, c[0] - c[2], c[1], False) == -1: return -2 if self.verify_point(im, pix, c[0], c[1] + c[2], True) is 1: cardinalpoints = cardinalpoints + 1 if self.verify_point(im, pix, c[0], c[1] + c[2], False) == -1: return -2 if self.verify_point(im, pix, c[0], c[1] - c[2], True) is 1: cardinalpoints = cardinalpoints + 1 if self.verify_point(im, pix, c[0], c[1] - c[2], False) == -1: return -2 if cardinalpoints < 3: return -1 for x in imagewidth: #: Pitagora y = int(round(c[1]- math.sqrt(c[2]**2-(c[0]-x)**2))) y2= int(round(c[1]+ math.sqrt(c[2]**2-(c[0]-x)**2))) howmany = howmany + 2 if self.verify_point(im, pix, x, y, exactfind) is 0: missing = missing + 1 missinglist.append((x, y)) else: pointsofcircle.append((x, y)) if self.verify_point(im, pix, x, y, False) == -1: return -2 if self.verify_point(im, pix, x, y2, exactfind) is 0: missing = missing + 1 missinglist.append((x, y2)) else: pointsofcircle.append((x, y2)) if self.verify_point(im, pix, x, y2, False) == -1: return -2 def verify_circle(self, im, pix, c): """ This is the MAIN function to recognize the circle returns: 1 -> Found closed circle 0 -> Found open circle -1 -> Not found circle -2 -> Found black position then leave position """ imageheight = xrange(int(c[1]-c[2]), int(c[1]+c[2])) imagewidth = xrange(int(c[0]-c[2]), int(c[0]+c[2])) min_ray = 15 max_ray = 30 exactfind = False howmany = 0 missing = 0 missingconsecutive = 0 missinglist = [] minX = 0 maxX = 0 minY = 0 maxY = 0 pointsofcircle = [] if (c[2] < min_ray) or (c[2] > max_ray): return -1 #: Check cardinal points (at least 3) (if found i have to leave this position) if pix[c[0] + c[2], c[1]] < self.BLACKCOLOR: return -2 if pix[c[0] - c[2], c[1]] < self.BLACKCOLOR: return -2 if pix[c[0], c[1] + c[2]] < self.BLACKCOLOR: return -2 if pix[c[0], c[1] - c[2]] < self.BLACKCOLOR: return -2 cardinalpoints = 0 if self.verify_point(im, pix, c[0] + c[2], c[1], True) is 1: cardinalpoints = cardinalpoints + 1 if self.verify_point(im, pix, c[0] + c[2], c[1], False) == -1: return -2 if self.verify_point(im, pix, c[0] - c[2], c[1], True) is 1: cardinalpoints = cardinalpoints + 1 if self.verify_point(im, pix, c[0] - c[2], c[1], False) == -1: return -2 if self.verify_point(im, pix, c[0], c[1] + c[2], True) is 1: cardinalpoints = cardinalpoints + 1 if self.verify_point(im, pix, c[0], c[1] + c[2], False) == -1: return -2 if self.verify_point(im, pix, c[0], c[1] - c[2], True) is 1: cardinalpoints = cardinalpoints + 1 if self.verify_point(im, pix, c[0], c[1] - c[2], False) == -1: return -2 if cardinalpoints < 3: return -1 for x in imagewidth: #: Pitagora y = int(round(c[1]- math.sqrt(c[2]**2-(c[0]-x)**2))) y2= int(round(c[1]+ math.sqrt(c[2]**2-(c[0]-x)**2))) howmany = howmany + 2 if self.verify_point(im, pix, x, y, exactfind) is 0: missing = missing + 1 missinglist.append((x, y)) else: pointsofcircle.append((x, y)) if self.verify_point(im, pix, x, y, False) == -1: return -2 if self.verify_point(im, pix, x, y2, exactfind) is 0: missing = missing + 1 missinglist.append((x, y2)) else: pointsofcircle.append((x, y2)) if self.verify_point(im, pix, x, y2, False) == -1: return -2 for y in imageheight: #: Pitagora x = int(round(c[0]- math.sqrt(c[2]**2-(c[1]-y)**2))) x2= int(round(c[0]+ math.sqrt(c[2]**2-(c[1]-y)**2))) howmany = howmany + 2 if self.verify_point(im, pix, x, y, exactfind) is 0: missing = missing + 1 missinglist.append((x, y)) else: pointsofcircle.append((x, y)) if self.verify_point(im, pix, x, y, False) == -1: return -2 if self.verify_point(im, pix, x2, y, exactfind) is 0: missing = missing + 1 missinglist.append((x2, y)) else: pointsofcircle.append((x2, y)) if self.verify_point(im, pix, x2, y, exactfind) == -1: return -2 for p in missinglist: #: Left and bottom if (self.verify_point(im, pix, p[0]-1, p[1], exactfind) is 1 and self.verify_point(im, pix, p[0], p[1]+1, exactfind) is 1): missing = missing - 1 elif (self.verify_point(im, pix, p[0]-1, p[1], exactfind) is 1 and self.verify_point(im, pix, p[0], p[1]-1, exactfind) is 1): missing = missing - 1 #: Right and bottom elif (self.verify_point(im, pix, p[0]+1, p[1], exactfind) is 1 and self.verify_point(im, pix, p[0], p[1]+1, exactfind) is 1): missing = missing - 1 #: Right and up elif (self.verify_point(im, pix, p[0]+1, p[1], exactfind) is 1 and self.verify_point(im, pix, p[0], p[1]-1, exactfind) is 1): missing = missing - 1 if ((p[0], p[1]+1) in missinglist or (p[0], p[1]-1) in missinglist or (p[0]+1, p[1]) in missinglist or (p[0]-1, p[1]) in missinglist or (p[0]+1, p[1]+1) in missinglist or (p[0]-1, p[1]+1) in missinglist or (p[0]+1, p[1]-1) in missinglist or (p[0]-1, p[1]-1) in missinglist or self.verify_point(im, pix, p[0], p[1], False) is 1): missingconsecutive = missingconsecutive + 1 # else: # pix[p[0], p[1]] = 0 if missing / howmany > 0: indice = c[2] * (missing / howmany) else: indice = 0 if len(missinglist) > 0: minX = min(missinglist, key=operator.itemgetter(0))[0] maxX = max(missinglist, key=operator.itemgetter(0))[0] minY = min(missinglist, key=operator.itemgetter(1))[1] maxY = max(missinglist, key=operator.itemgetter(1))[1] #: Assial Simmetric if self.pyload.debug: self.log_debug("Center: %s" % c, "Missing: %s" % missing, "Howmany: %s" % howmany, "Ratio: %s" % (missing / howmany), "Missing consecutives: %s" % missingconsecutive, "Missing X lenght: %s:%s" % (minX, maxX), "Missing Y lenght: %s:%s" % (minY, maxY), "Ratio without consecutives: %s" % ((missing - missingconsecutive) / howmany), "List missing: %s" % missinglist) #: Lenght of missing cannot be over 75% of diameter if maxX - minX >= c[2] * 2 * 0.75: return -1 if maxY - minY >= c[2] * 2 * 0.75: #: raw_input('tro') return -1 """ #: Lenght of missing cannot be less 10% of diameter if maxX - minX < c[2] * 2 * 0.10 and maxY - minY < c[2] * 2 * 0.10: return -1 """ if missing / howmany > 0.25 or \ missingconsecutive >= (howmany / 4) * 2 or \ howmany < 80: return -1 # elif missing / howmany < 0.10: elif missing is 0: self.pointsofcirclefound.extend(pointsofcircle) return 1 elif (missing - missingconsecutive) / howmany < 0.20: return 0 else: self.pointsofcirclefound.extend(pointsofcircle) return 1 def verify_point(self, im, pix, x, y, exact, color = -1): #: Verify point result = 0 if x < 0 or x >= im.size[0]: return result if y < 0 or y >= im.size[1]: return result curpix = pix[x, y] if (curpix is color and color > -1) or (curpix < self.BACKGROUND and color == -1): if curpix > self.BLACKCOLOR: result = 1 else: result = -1 #: Verify around if exact is False: if x + 1 < im.size[0]: curpix = pix[x+1, y] if (curpix is color and color > -1) or (curpix < self.BACKGROUND and color == -1): if curpix > self.BLACKCOLOR: result = 1 if curpix <= self.BLACKCOLOR: result = -1 if x > 0: curpix = pix[x-1, y] if (curpix is color and color > -1) or (curpix < self.BACKGROUND and color == -1): if curpix > self.BLACKCOLOR: result = 1 if curpix <= self.BLACKCOLOR: result = -1 # self.log_debug(str((x, y)) + " = " + str(result)) return result def decrypt(self, img): iDebugSaveFile = 0 mypalette = None for im in ImageSequence(img): im.save("orig.png", "png") if mypalette is not None: im.putpalette(mypalette) mypalette = im.getpalette() im = im.convert('L') if self.pyload.debug: iDebugSaveFile = iDebugSaveFile + 1 # if iDebugSaveFile < 7: # continue im.save("output" + str(iDebugSaveFile) + ".png", "png") raw_input('frame: '+ str(im)) pix = im.load() stepheight = xrange(1, im.size[1], 2) #: stepheight = xrange(45, 47) imagewidth = xrange(1, im.size[0]) lstPoints = [] # Declares an empty list for the points lstX = [] # CoordinateX lstY = [] # CoordinateY lstColors = [] # Declares an empty list named lst min_distance = 10 max_diameter = 70 if self.pyload.debug: imdebug = im.copy() draw = ImageDraw.Draw(imdebug) pixcopy = imdebug.load() #: Clean image for powerfull search self.clean_image(im, pix) im.save("cleaned" + str(iDebugSaveFile) + ".png", "png") found = set() findnewcircle = True #: Finding all the circles for y1 in stepheight: x1 = 1 curcolor = -1 for k in xrange(1, 100): findnewcircle = False retval = self.find_first_pixel_x(im, pix, x1, y1, -1, False) x1 = retval[0] curcolor = retval[1] if x1 == -2: break if x1 == -1: break if self.pyload.debug: self.log_debug("x1, y1 -> " + str((x1, y1)) + ": " + str(pix[x1, y1])) if (x1, y1) in self.pointsofcirclefound: if self.pyload.debug: self.log_debug("Found " + str((x1, y1))) continue if self.pyload.debug: pixcopy[x1, y1] = 45 #(255, 0, 0, 255) #: found 1 pixel, seeking x2, y2 x2 = x1 y2 = y1 for i in xrange(1, 100): retval = self.find_last_pixel_x(im, pix, x2, y2, -1, True) x2 = retval[0] if x1 == -2: findnewcircle = True break if x2 == -1: break if self.pyload.debug: self.log_debug("x2, y2 -> " + str((x2, y1)) + ": " + str(pix[x2, y1])) if abs(x2 - x1) < min_distance: continue if abs(x2 - x1) > (im.size[1] * 2 / 3): break if abs(x2 - x1) > max_diameter: break if self.pyload.debug: pixcopy[x2, y2] = 65 #(0, 255, 0, 255) #: found 2 pixel, seeking x3, y3 #: Verify cord for invert in xrange(0, 2): x3 = math.floor(x2 - ((x2 - x1) / 2)) y3 = y1 for j in xrange(1, 50): retval = self.find_last_pixel_y(im, pix, x3, y3, True if invert is 1 else False, -1, True) # self.log_debug(x3, y3, retval[0], invert) y3 = retval[0] if y3 == -2: findnewcircle = True break if y3 == -1: break if self.pyload.debug: self.log_debug("x3, y3 -> " + str((x3, y3)) + ": " + str(pix[x3, y3])) #: Verify cord if abs(y3 - y2) < min_distance: continue if abs(y3 - y2) > (im.size[1] * 2 / 3): break if abs(y3 - y2) > max_diameter: break if self.pyload.debug: pixcopy[x3, y3] = 85 #: found 3 pixel. try circle c = self.find_circle(pix, x1, y1, x2, y2, x3, y3) if c[0] + c[2] >= im.size[0] or c[1] + c[2] >= im.size[1] or c[0] - c[2] <= 0 or c[1] - c[2] <= 0: continue if self.pyload.debug: pixcopy[c[0], c[1]] = 0 #: (x-r, y-r, x+r, y+r) verified = self.verify_circle(im, pix, c) if verified == -1: verified = -1 elif verified is 0: found.add(((c[0], c[1], c[2]), verified)) findnewcircle = True elif verified is 1: found.add(((c[0], c[1], c[2]), verified)) findnewcircle = True if self.pyload.debug: _pause = "" # if verified == -1: # draw.ellipse((c[0]-c[2], c[1]-c[2], c[0]+c[2], c[1]+c[2]), outline=0) # _pause = "NOTDOUND" # imdebug.save("debug.png", "png") if verified is 0: draw.ellipse((c[0]-c[2], c[1]-c[2], c[0]+c[2], c[1]+c[2]), outline=120) _pause = "OPENED" if verified is 1: draw.ellipse((c[0]-c[2], c[1]-c[2], c[0]+c[2], c[1]+c[2]), outline=65) _pause = "CLOSED" imdebug.save("debug.png", "png") if _pause != "": valore = raw_input('Found ' + _pause + ' CIRCLE circle press [Enter] = continue / [q] for Quit: ' + str(verified)) if valore == "q": sys.exit() if findnewcircle is True: break if findnewcircle is True: break if findnewcircle is True: break if self.pyload.debug: self.log_debug("Howmany opened circle?", found) #: Clean results for c in found: verify = c[1] if verify is 0: p = c[0] if (((p[0], p[1]+1, p[2]), 1) in found or ((p[0], p[1]-1, p[2]), 1) in found or ((p[0]+1, p[1], p[2]), 1) in found or ((p[0]-1, p[1], p[2]), 1) in found or ((p[0]+1, p[1]+1, p[2]), 1) in found or ((p[0]-1, p[1]+1, p[2]), 1) in found or ((p[0]+1, p[1]-1, p[2]), 1) in found or ((p[0]-1, p[1]-1, p[2]), 1) in found): #: Delete nearly circle verify = -1 if (((p[0], p[1]+1, p[2]+1), 1) in found or ((p[0], p[1]-1, p[2]+1), 1) in found or ((p[0]+1, p[1], p[2]+1), 1) in found or ((p[0]-1, p[1], p[2]+1), 1) in found or ((p[0]+1, p[1]+1, p[2]+1), 1) in found or ((p[0]-1, p[1]+1, p[2]+1), 1) in found or ((p[0]+1, p[1]-1, p[2]+1), 1) in found or ((p[0]-1, p[1]-1, p[2]+1), 1) in found): #: Delete nearly circle verify = -1 if (((p[0], p[1]+1, p[2]-1), 1) in found or ((p[0], p[1]-1, p[2]-1), 1) in found or ((p[0]+1, p[1], p[2]-1), 1) in found or ((p[0]-1, p[1], p[2]-1), 1) in found or ((p[0]+1, p[1]+1, p[2]-1), 1) in found or ((p[0]-1, p[1]+1, p[2]-1), 1) in found or ((p[0]+1, p[1]-1, p[2]-1), 1) in found or ((p[0]-1, p[1]-1, p[2]-1), 1) in found): #: Delete nearly circle verify = -1 # if verify is 0: # if self.pyload.debug: # pix[c[0][0], c[0][1]] = 90 #(255, 255, 0) # im.save("output.png", "png") # return c[0][0], c[0][1] # elif verify is 1: # if self.pyload.debug: # pix[c[0][0], c[0][1]] = 40 #(255, 0, 0) # im.save("output.png", "png") # else: # if self.pyload.debug: # pix[c[0][0], c[0][1]] = 180 #(0, 0, 255) # im.save("output.png", "png") if self.pyload.debug: im.save("output.png", "png") #: Return coordinates of opened circle (eg (x, y)) def decrypt_from_web(self, url): file = cStringIO.StringIO(urllib.urlopen(url).read()) img = Image.open(file) coords = self.decrypt(img) self.log_info(_("Coords: %s") % coords) #: Return coordinates of opened circle (eg (x, y)) def decrypt_from_file(self, filename): coords = self.decrypt(Image.open(filename)) #: Can be many different formats. self.log_info(_("Coords: %s") % coords) ##DEBUG # import datetime # a = datetime.datetime.now() # x = CircleCaptcha() # coords = x.decrypt_from_file("decripter/captx.html2.gif") # coords = x.decrypt_from_web("http://ncrypt.in/classes/captcha/circlecaptcha.php") # b = datetime.datetime.now() # self.log_debug("Elapsed time: %s seconds" % (b-a).seconds)