diff options
Diffstat (limited to 'lib/Python/Lib/PIL/JpegImagePlugin.py')
-rw-r--r-- | lib/Python/Lib/PIL/JpegImagePlugin.py | 739 |
1 files changed, 739 insertions, 0 deletions
diff --git a/lib/Python/Lib/PIL/JpegImagePlugin.py b/lib/Python/Lib/PIL/JpegImagePlugin.py new file mode 100644 index 000000000..8c20f5863 --- /dev/null +++ b/lib/Python/Lib/PIL/JpegImagePlugin.py @@ -0,0 +1,739 @@ +# +# The Python Imaging Library. +# $Id$ +# +# JPEG (JFIF) file handling +# +# See "Digital Compression and Coding of Continous-Tone Still Images, +# Part 1, Requirements and Guidelines" (CCITT T.81 / ISO 10918-1) +# +# History: +# 1995-09-09 fl Created +# 1995-09-13 fl Added full parser +# 1996-03-25 fl Added hack to use the IJG command line utilities +# 1996-05-05 fl Workaround Photoshop 2.5 CMYK polarity bug +# 1996-05-28 fl Added draft support, JFIF version (0.1) +# 1996-12-30 fl Added encoder options, added progression property (0.2) +# 1997-08-27 fl Save mode 1 images as BW (0.3) +# 1998-07-12 fl Added YCbCr to draft and save methods (0.4) +# 1998-10-19 fl Don't hang on files using 16-bit DQT's (0.4.1) +# 2001-04-16 fl Extract DPI settings from JFIF files (0.4.2) +# 2002-07-01 fl Skip pad bytes before markers; identify Exif files (0.4.3) +# 2003-04-25 fl Added experimental EXIF decoder (0.5) +# 2003-06-06 fl Added experimental EXIF GPSinfo decoder +# 2003-09-13 fl Extract COM markers +# 2009-09-06 fl Added icc_profile support (from Florian Hoech) +# 2009-03-06 fl Changed CMYK handling; always use Adobe polarity (0.6) +# 2009-03-08 fl Added subsampling support (from Justin Huff). +# +# Copyright (c) 1997-2003 by Secret Labs AB. +# Copyright (c) 1995-1996 by Fredrik Lundh. +# +# See the README file for information on usage and redistribution. +# + +__version__ = "0.6" + +import array +import struct +import io +from struct import unpack +from PIL import Image, ImageFile, TiffImagePlugin, _binary +from PIL.JpegPresets import presets +from PIL._util import isStringType + +i8 = _binary.i8 +o8 = _binary.o8 +i16 = _binary.i16be +i32 = _binary.i32be + + +# +# Parser + +def Skip(self, marker): + n = i16(self.fp.read(2))-2 + ImageFile._safe_read(self.fp, n) + + +def APP(self, marker): + # + # Application marker. Store these in the APP dictionary. + # Also look for well-known application markers. + + n = i16(self.fp.read(2))-2 + s = ImageFile._safe_read(self.fp, n) + + app = "APP%d" % (marker & 15) + + self.app[app] = s # compatibility + self.applist.append((app, s)) + + if marker == 0xFFE0 and s[:4] == b"JFIF": + # extract JFIF information + self.info["jfif"] = version = i16(s, 5) # version + self.info["jfif_version"] = divmod(version, 256) + # extract JFIF properties + try: + jfif_unit = i8(s[7]) + jfif_density = i16(s, 8), i16(s, 10) + except: + pass + else: + if jfif_unit == 1: + self.info["dpi"] = jfif_density + self.info["jfif_unit"] = jfif_unit + self.info["jfif_density"] = jfif_density + elif marker == 0xFFE1 and s[:5] == b"Exif\0": + # extract Exif information (incomplete) + self.info["exif"] = s # FIXME: value will change + elif marker == 0xFFE2 and s[:5] == b"FPXR\0": + # extract FlashPix information (incomplete) + self.info["flashpix"] = s # FIXME: value will change + elif marker == 0xFFE2 and s[:12] == b"ICC_PROFILE\0": + # Since an ICC profile can be larger than the maximum size of + # a JPEG marker (64K), we need provisions to split it into + # multiple markers. The format defined by the ICC specifies + # one or more APP2 markers containing the following data: + # Identifying string ASCII "ICC_PROFILE\0" (12 bytes) + # Marker sequence number 1, 2, etc (1 byte) + # Number of markers Total of APP2's used (1 byte) + # Profile data (remainder of APP2 data) + # Decoders should use the marker sequence numbers to + # reassemble the profile, rather than assuming that the APP2 + # markers appear in the correct sequence. + self.icclist.append(s) + elif marker == 0xFFEE and s[:5] == b"Adobe": + self.info["adobe"] = i16(s, 5) + # extract Adobe custom properties + try: + adobe_transform = i8(s[1]) + except: + pass + else: + self.info["adobe_transform"] = adobe_transform + elif marker == 0xFFE2 and s[:4] == b"MPF\0": + # extract MPO information + self.info["mp"] = s[4:] + # offset is current location minus buffer size + # plus constant header size + self.info["mpoffset"] = self.fp.tell() - n + 4 + + +def COM(self, marker): + # + # Comment marker. Store these in the APP dictionary. + n = i16(self.fp.read(2))-2 + s = ImageFile._safe_read(self.fp, n) + + self.app["COM"] = s # compatibility + self.applist.append(("COM", s)) + + +def SOF(self, marker): + # + # Start of frame marker. Defines the size and mode of the + # image. JPEG is colour blind, so we use some simple + # heuristics to map the number of layers to an appropriate + # mode. Note that this could be made a bit brighter, by + # looking for JFIF and Adobe APP markers. + + n = i16(self.fp.read(2))-2 + s = ImageFile._safe_read(self.fp, n) + self.size = i16(s[3:]), i16(s[1:]) + + self.bits = i8(s[0]) + if self.bits != 8: + raise SyntaxError("cannot handle %d-bit layers" % self.bits) + + self.layers = i8(s[5]) + if self.layers == 1: + self.mode = "L" + elif self.layers == 3: + self.mode = "RGB" + elif self.layers == 4: + self.mode = "CMYK" + else: + raise SyntaxError("cannot handle %d-layer images" % self.layers) + + if marker in [0xFFC2, 0xFFC6, 0xFFCA, 0xFFCE]: + self.info["progressive"] = self.info["progression"] = 1 + + if self.icclist: + # fixup icc profile + self.icclist.sort() # sort by sequence number + if i8(self.icclist[0][13]) == len(self.icclist): + profile = [] + for p in self.icclist: + profile.append(p[14:]) + icc_profile = b"".join(profile) + else: + icc_profile = None # wrong number of fragments + self.info["icc_profile"] = icc_profile + self.icclist = None + + for i in range(6, len(s), 3): + t = s[i:i+3] + # 4-tuples: id, vsamp, hsamp, qtable + self.layer.append((t[0], i8(t[1])//16, i8(t[1]) & 15, i8(t[2]))) + + +def DQT(self, marker): + # + # Define quantization table. Support baseline 8-bit tables + # only. Note that there might be more than one table in + # each marker. + + # FIXME: The quantization tables can be used to estimate the + # compression quality. + + n = i16(self.fp.read(2))-2 + s = ImageFile._safe_read(self.fp, n) + while len(s): + if len(s) < 65: + raise SyntaxError("bad quantization table marker") + v = i8(s[0]) + if v//16 == 0: + self.quantization[v & 15] = array.array("b", s[1:65]) + s = s[65:] + else: + return # FIXME: add code to read 16-bit tables! + # raise SyntaxError, "bad quantization table element size" + + +# +# JPEG marker table + +MARKER = { + 0xFFC0: ("SOF0", "Baseline DCT", SOF), + 0xFFC1: ("SOF1", "Extended Sequential DCT", SOF), + 0xFFC2: ("SOF2", "Progressive DCT", SOF), + 0xFFC3: ("SOF3", "Spatial lossless", SOF), + 0xFFC4: ("DHT", "Define Huffman table", Skip), + 0xFFC5: ("SOF5", "Differential sequential DCT", SOF), + 0xFFC6: ("SOF6", "Differential progressive DCT", SOF), + 0xFFC7: ("SOF7", "Differential spatial", SOF), + 0xFFC8: ("JPG", "Extension", None), + 0xFFC9: ("SOF9", "Extended sequential DCT (AC)", SOF), + 0xFFCA: ("SOF10", "Progressive DCT (AC)", SOF), + 0xFFCB: ("SOF11", "Spatial lossless DCT (AC)", SOF), + 0xFFCC: ("DAC", "Define arithmetic coding conditioning", Skip), + 0xFFCD: ("SOF13", "Differential sequential DCT (AC)", SOF), + 0xFFCE: ("SOF14", "Differential progressive DCT (AC)", SOF), + 0xFFCF: ("SOF15", "Differential spatial (AC)", SOF), + 0xFFD0: ("RST0", "Restart 0", None), + 0xFFD1: ("RST1", "Restart 1", None), + 0xFFD2: ("RST2", "Restart 2", None), + 0xFFD3: ("RST3", "Restart 3", None), + 0xFFD4: ("RST4", "Restart 4", None), + 0xFFD5: ("RST5", "Restart 5", None), + 0xFFD6: ("RST6", "Restart 6", None), + 0xFFD7: ("RST7", "Restart 7", None), + 0xFFD8: ("SOI", "Start of image", None), + 0xFFD9: ("EOI", "End of image", None), + 0xFFDA: ("SOS", "Start of scan", Skip), + 0xFFDB: ("DQT", "Define quantization table", DQT), + 0xFFDC: ("DNL", "Define number of lines", Skip), + 0xFFDD: ("DRI", "Define restart interval", Skip), + 0xFFDE: ("DHP", "Define hierarchical progression", SOF), + 0xFFDF: ("EXP", "Expand reference component", Skip), + 0xFFE0: ("APP0", "Application segment 0", APP), + 0xFFE1: ("APP1", "Application segment 1", APP), + 0xFFE2: ("APP2", "Application segment 2", APP), + 0xFFE3: ("APP3", "Application segment 3", APP), + 0xFFE4: ("APP4", "Application segment 4", APP), + 0xFFE5: ("APP5", "Application segment 5", APP), + 0xFFE6: ("APP6", "Application segment 6", APP), + 0xFFE7: ("APP7", "Application segment 7", APP), + 0xFFE8: ("APP8", "Application segment 8", APP), + 0xFFE9: ("APP9", "Application segment 9", APP), + 0xFFEA: ("APP10", "Application segment 10", APP), + 0xFFEB: ("APP11", "Application segment 11", APP), + 0xFFEC: ("APP12", "Application segment 12", APP), + 0xFFED: ("APP13", "Application segment 13", APP), + 0xFFEE: ("APP14", "Application segment 14", APP), + 0xFFEF: ("APP15", "Application segment 15", APP), + 0xFFF0: ("JPG0", "Extension 0", None), + 0xFFF1: ("JPG1", "Extension 1", None), + 0xFFF2: ("JPG2", "Extension 2", None), + 0xFFF3: ("JPG3", "Extension 3", None), + 0xFFF4: ("JPG4", "Extension 4", None), + 0xFFF5: ("JPG5", "Extension 5", None), + 0xFFF6: ("JPG6", "Extension 6", None), + 0xFFF7: ("JPG7", "Extension 7", None), + 0xFFF8: ("JPG8", "Extension 8", None), + 0xFFF9: ("JPG9", "Extension 9", None), + 0xFFFA: ("JPG10", "Extension 10", None), + 0xFFFB: ("JPG11", "Extension 11", None), + 0xFFFC: ("JPG12", "Extension 12", None), + 0xFFFD: ("JPG13", "Extension 13", None), + 0xFFFE: ("COM", "Comment", COM) +} + + +def _accept(prefix): + return prefix[0:1] == b"\377" + + +## +# Image plugin for JPEG and JFIF images. + +class JpegImageFile(ImageFile.ImageFile): + + format = "JPEG" + format_description = "JPEG (ISO 10918)" + + def _open(self): + + s = self.fp.read(1) + + if i8(s[0]) != 255: + raise SyntaxError("not a JPEG file") + + # Create attributes + self.bits = self.layers = 0 + + # JPEG specifics (internal) + self.layer = [] + self.huffman_dc = {} + self.huffman_ac = {} + self.quantization = {} + self.app = {} # compatibility + self.applist = [] + self.icclist = [] + + while True: + + i = i8(s) + if i == 0xFF: + s = s + self.fp.read(1) + i = i16(s) + else: + # Skip non-0xFF junk + s = b"\xff" + continue + + if i in MARKER: + name, description, handler = MARKER[i] + # print hex(i), name, description + if handler is not None: + handler(self, i) + if i == 0xFFDA: # start of scan + rawmode = self.mode + if self.mode == "CMYK": + rawmode = "CMYK;I" # assume adobe conventions + self.tile = [("jpeg", (0, 0) + self.size, 0, + (rawmode, ""))] + # self.__offset = self.fp.tell() + break + s = self.fp.read(1) + elif i == 0 or i == 0xFFFF: + # padded marker or junk; move on + s = b"\xff" + else: + raise SyntaxError("no marker found") + + def draft(self, mode, size): + + if len(self.tile) != 1: + return + + d, e, o, a = self.tile[0] + scale = 0 + + if a[0] == "RGB" and mode in ["L", "YCbCr"]: + self.mode = mode + a = mode, "" + + if size: + scale = max(self.size[0] // size[0], self.size[1] // size[1]) + for s in [8, 4, 2, 1]: + if scale >= s: + break + e = e[0], e[1], (e[2]-e[0]+s-1)//s+e[0], (e[3]-e[1]+s-1)//s+e[1] + self.size = ((self.size[0]+s-1)//s, (self.size[1]+s-1)//s) + scale = s + + self.tile = [(d, e, o, a)] + self.decoderconfig = (scale, 0) + + return self + + def load_djpeg(self): + + # ALTERNATIVE: handle JPEGs via the IJG command line utilities + + import subprocess + import tempfile + import os + f, path = tempfile.mkstemp() + os.close(f) + if os.path.exists(self.filename): + subprocess.check_call(["djpeg", "-outfile", path, self.filename]) + else: + raise ValueError("Invalid Filename") + + try: + self.im = Image.core.open_ppm(path) + finally: + try: + os.unlink(path) + except: + pass + + self.mode = self.im.mode + self.size = self.im.size + + self.tile = [] + + def _getexif(self): + return _getexif(self) + + def _getmp(self): + return _getmp(self) + + +def _fixup(value): + # Helper function for _getexif() and _getmp() + if len(value) == 1: + return value[0] + return value + + +def _getexif(self): + # Extract EXIF information. This method is highly experimental, + # and is likely to be replaced with something better in a future + # version. + + # The EXIF record consists of a TIFF file embedded in a JPEG + # application marker (!). + try: + data = self.info["exif"] + except KeyError: + return None + file = io.BytesIO(data[6:]) + head = file.read(8) + exif = {} + # process dictionary + info = TiffImagePlugin.ImageFileDirectory(head) + info.load(file) + for key, value in info.items(): + exif[key] = _fixup(value) + # get exif extension + try: + file.seek(exif[0x8769]) + except KeyError: + pass + else: + info = TiffImagePlugin.ImageFileDirectory(head) + info.load(file) + for key, value in info.items(): + exif[key] = _fixup(value) + # get gpsinfo extension + try: + file.seek(exif[0x8825]) + except KeyError: + pass + else: + info = TiffImagePlugin.ImageFileDirectory(head) + info.load(file) + exif[0x8825] = gps = {} + for key, value in info.items(): + gps[key] = _fixup(value) + return exif + + +def _getmp(self): + # Extract MP information. This method was inspired by the "highly + # experimental" _getexif version that's been in use for years now, + # itself based on the ImageFileDirectory class in the TIFF plug-in. + + # The MP record essentially consists of a TIFF file embedded in a JPEG + # application marker. + try: + data = self.info["mp"] + except KeyError: + return None + file = io.BytesIO(data) + head = file.read(8) + endianness = '>' if head[:4] == b'\x4d\x4d\x00\x2a' else '<' + mp = {} + # process dictionary + info = TiffImagePlugin.ImageFileDirectory(head) + info.load(file) + for key, value in info.items(): + mp[key] = _fixup(value) + # it's an error not to have a number of images + try: + quant = mp[0xB001] + except KeyError: + raise SyntaxError("malformed MP Index (no number of images)") + # get MP entries + try: + mpentries = [] + for entrynum in range(0, quant): + rawmpentry = mp[0xB002][entrynum * 16:(entrynum + 1) * 16] + unpackedentry = unpack('{0}LLLHH'.format(endianness), rawmpentry) + labels = ('Attribute', 'Size', 'DataOffset', 'EntryNo1', + 'EntryNo2') + mpentry = dict(zip(labels, unpackedentry)) + mpentryattr = { + 'DependentParentImageFlag': bool(mpentry['Attribute'] & + (1 << 31)), + 'DependentChildImageFlag': bool(mpentry['Attribute'] & + (1 << 30)), + 'RepresentativeImageFlag': bool(mpentry['Attribute'] & + (1 << 29)), + 'Reserved': (mpentry['Attribute'] & (3 << 27)) >> 27, + 'ImageDataFormat': (mpentry['Attribute'] & (7 << 24)) >> 24, + 'MPType': mpentry['Attribute'] & 0x00FFFFFF + } + if mpentryattr['ImageDataFormat'] == 0: + mpentryattr['ImageDataFormat'] = 'JPEG' + else: + raise SyntaxError("unsupported picture format in MPO") + mptypemap = { + 0x000000: 'Undefined', + 0x010001: 'Large Thumbnail (VGA Equivalent)', + 0x010002: 'Large Thumbnail (Full HD Equivalent)', + 0x020001: 'Multi-Frame Image (Panorama)', + 0x020002: 'Multi-Frame Image: (Disparity)', + 0x020003: 'Multi-Frame Image: (Multi-Angle)', + 0x030000: 'Baseline MP Primary Image' + } + mpentryattr['MPType'] = mptypemap.get(mpentryattr['MPType'], + 'Unknown') + mpentry['Attribute'] = mpentryattr + mpentries.append(mpentry) + mp[0xB002] = mpentries + except KeyError: + raise SyntaxError("malformed MP Index (bad MP Entry)") + # Next we should try and parse the individual image unique ID list; + # we don't because I've never seen this actually used in a real MPO + # file and so can't test it. + return mp + + +# -------------------------------------------------------------------- +# stuff to save JPEG files + +RAWMODE = { + "1": "L", + "L": "L", + "RGB": "RGB", + "RGBA": "RGB", + "RGBX": "RGB", + "CMYK": "CMYK;I", # assume adobe conventions + "YCbCr": "YCbCr", +} + +zigzag_index = ( 0, 1, 5, 6, 14, 15, 27, 28, + 2, 4, 7, 13, 16, 26, 29, 42, + 3, 8, 12, 17, 25, 30, 41, 43, + 9, 11, 18, 24, 31, 40, 44, 53, + 10, 19, 23, 32, 39, 45, 52, 54, + 20, 22, 33, 38, 46, 51, 55, 60, + 21, 34, 37, 47, 50, 56, 59, 61, + 35, 36, 48, 49, 57, 58, 62, 63) + +samplings = {(1, 1, 1, 1, 1, 1): 0, + (2, 1, 1, 1, 1, 1): 1, + (2, 2, 1, 1, 1, 1): 2, + } + + +def convert_dict_qtables(qtables): + qtables = [qtables[key] for key in range(len(qtables)) if key in qtables] + for idx, table in enumerate(qtables): + qtables[idx] = [table[i] for i in zigzag_index] + return qtables + + +def get_sampling(im): + # There's no subsampling when image have only 1 layer + # (grayscale images) or when they are CMYK (4 layers), + # so set subsampling to default value. + # + # NOTE: currently Pillow can't encode JPEG to YCCK format. + # If YCCK support is added in the future, subsampling code will have + # to be updated (here and in JpegEncode.c) to deal with 4 layers. + if not hasattr(im, 'layers') or im.layers in (1, 4): + return -1 + sampling = im.layer[0][1:3] + im.layer[1][1:3] + im.layer[2][1:3] + return samplings.get(sampling, -1) + + +def _save(im, fp, filename): + + try: + rawmode = RAWMODE[im.mode] + except KeyError: + raise IOError("cannot write mode %s as JPEG" % im.mode) + + info = im.encoderinfo + + dpi = info.get("dpi", (0, 0)) + + quality = info.get("quality", 0) + subsampling = info.get("subsampling", -1) + qtables = info.get("qtables") + + if quality == "keep": + quality = 0 + subsampling = "keep" + qtables = "keep" + elif quality in presets: + preset = presets[quality] + quality = 0 + subsampling = preset.get('subsampling', -1) + qtables = preset.get('quantization') + elif not isinstance(quality, int): + raise ValueError("Invalid quality setting") + else: + if subsampling in presets: + subsampling = presets[subsampling].get('subsampling', -1) + if isStringType(qtables) and qtables in presets: + qtables = presets[qtables].get('quantization') + + if subsampling == "4:4:4": + subsampling = 0 + elif subsampling == "4:2:2": + subsampling = 1 + elif subsampling == "4:1:1": + subsampling = 2 + elif subsampling == "keep": + if im.format != "JPEG": + raise ValueError( + "Cannot use 'keep' when original image is not a JPEG") + subsampling = get_sampling(im) + + def validate_qtables(qtables): + if qtables is None: + return qtables + if isStringType(qtables): + try: + lines = [int(num) for line in qtables.splitlines() + for num in line.split('#', 1)[0].split()] + except ValueError: + raise ValueError("Invalid quantization table") + else: + qtables = [lines[s:s+64] for s in range(0, len(lines), 64)] + if isinstance(qtables, (tuple, list, dict)): + if isinstance(qtables, dict): + qtables = convert_dict_qtables(qtables) + elif isinstance(qtables, tuple): + qtables = list(qtables) + if not (0 < len(qtables) < 5): + raise ValueError("None or too many quantization tables") + for idx, table in enumerate(qtables): + try: + if len(table) != 64: + raise + table = array.array('b', table) + except TypeError: + raise ValueError("Invalid quantization table") + else: + qtables[idx] = list(table) + return qtables + + if qtables == "keep": + if im.format != "JPEG": + raise ValueError( + "Cannot use 'keep' when original image is not a JPEG") + qtables = getattr(im, "quantization", None) + qtables = validate_qtables(qtables) + + extra = b"" + + icc_profile = info.get("icc_profile") + if icc_profile: + ICC_OVERHEAD_LEN = 14 + MAX_BYTES_IN_MARKER = 65533 + MAX_DATA_BYTES_IN_MARKER = MAX_BYTES_IN_MARKER - ICC_OVERHEAD_LEN + markers = [] + while icc_profile: + markers.append(icc_profile[:MAX_DATA_BYTES_IN_MARKER]) + icc_profile = icc_profile[MAX_DATA_BYTES_IN_MARKER:] + i = 1 + for marker in markers: + size = struct.pack(">H", 2 + ICC_OVERHEAD_LEN + len(marker)) + extra += (b"\xFF\xE2" + size + b"ICC_PROFILE\0" + o8(i) + + o8(len(markers)) + marker) + i += 1 + + # get keyword arguments + im.encoderconfig = ( + quality, + # "progressive" is the official name, but older documentation + # says "progression" + # FIXME: issue a warning if the wrong form is used (post-1.1.7) + "progressive" in info or "progression" in info, + info.get("smooth", 0), + "optimize" in info, + info.get("streamtype", 0), + dpi[0], dpi[1], + subsampling, + qtables, + extra, + info.get("exif", b"") + ) + + # if we optimize, libjpeg needs a buffer big enough to hold the whole image + # in a shot. Guessing on the size, at im.size bytes. (raw pizel size is + # channels*size, this is a value that's been used in a django patch. + # https://github.com/jdriscoll/django-imagekit/issues/50 + bufsize = 0 + if "optimize" in info or "progressive" in info or "progression" in info: + # keep sets quality to 0, but the actual value may be high. + if quality >= 95 or quality == 0: + bufsize = 2 * im.size[0] * im.size[1] + else: + bufsize = im.size[0] * im.size[1] + + # The exif info needs to be written as one block, + APP1, + one spare byte. + # Ensure that our buffer is big enough + bufsize = max(ImageFile.MAXBLOCK, bufsize, len(info.get("exif", b"")) + 5) + + ImageFile._save(im, fp, [("jpeg", (0, 0)+im.size, 0, rawmode)], bufsize) + + +def _save_cjpeg(im, fp, filename): + # ALTERNATIVE: handle JPEGs via the IJG command line utilities. + import os + import subprocess + tempfile = im._dump() + subprocess.check_call(["cjpeg", "-outfile", filename, tempfile]) + try: + os.unlink(file) + except: + pass + + +## +# Factory for making JPEG and MPO instances +def jpeg_factory(fp=None, filename=None): + im = JpegImageFile(fp, filename) + mpheader = im._getmp() + try: + if mpheader[45057] > 1: + # It's actually an MPO + from .MpoImagePlugin import MpoImageFile + im = MpoImageFile(fp, filename) + except (TypeError, IndexError): + # It is really a JPEG + pass + return im + + +# -------------------------------------------------------------------q- +# Registry stuff + +Image.register_open("JPEG", jpeg_factory, _accept) +Image.register_save("JPEG", _save) + +Image.register_extension("JPEG", ".jfif") +Image.register_extension("JPEG", ".jpe") +Image.register_extension("JPEG", ".jpg") +Image.register_extension("JPEG", ".jpeg") + +Image.register_mime("JPEG", "image/jpeg") |