diff options
Diffstat (limited to 'lib/Python/Lib/PIL/ImageStat.py')
-rw-r--r-- | lib/Python/Lib/PIL/ImageStat.py | 147 |
1 files changed, 147 insertions, 0 deletions
diff --git a/lib/Python/Lib/PIL/ImageStat.py b/lib/Python/Lib/PIL/ImageStat.py new file mode 100644 index 000000000..7e023c673 --- /dev/null +++ b/lib/Python/Lib/PIL/ImageStat.py @@ -0,0 +1,147 @@ +# +# The Python Imaging Library. +# $Id$ +# +# global image statistics +# +# History: +# 1996-04-05 fl Created +# 1997-05-21 fl Added mask; added rms, var, stddev attributes +# 1997-08-05 fl Added median +# 1998-07-05 hk Fixed integer overflow error +# +# Notes: +# This class shows how to implement delayed evaluation of attributes. +# To get a certain value, simply access the corresponding attribute. +# The __getattr__ dispatcher takes care of the rest. +# +# Copyright (c) Secret Labs AB 1997. +# Copyright (c) Fredrik Lundh 1996-97. +# +# See the README file for information on usage and redistribution. +# + +import math +import operator +from functools import reduce + + +class Stat: + + def __init__(self, image_or_list, mask=None): + try: + if mask: + self.h = image_or_list.histogram(mask) + else: + self.h = image_or_list.histogram() + except AttributeError: + self.h = image_or_list # assume it to be a histogram list + if not isinstance(self.h, list): + raise TypeError("first argument must be image or list") + self.bands = list(range(len(self.h) // 256)) + + def __getattr__(self, id): + "Calculate missing attribute" + if id[:4] == "_get": + raise AttributeError(id) + # calculate missing attribute + v = getattr(self, "_get" + id)() + setattr(self, id, v) + return v + + def _getextrema(self): + "Get min/max values for each band in the image" + + def minmax(histogram): + n = 255 + x = 0 + for i in range(256): + if histogram[i]: + n = min(n, i) + x = max(x, i) + return n, x # returns (255, 0) if there's no data in the histogram + + v = [] + for i in range(0, len(self.h), 256): + v.append(minmax(self.h[i:])) + return v + + def _getcount(self): + "Get total number of pixels in each layer" + + v = [] + for i in range(0, len(self.h), 256): + v.append(reduce(operator.add, self.h[i:i+256])) + return v + + def _getsum(self): + "Get sum of all pixels in each layer" + + v = [] + for i in range(0, len(self.h), 256): + sum = 0.0 + for j in range(256): + sum += j * self.h[i + j] + v.append(sum) + return v + + def _getsum2(self): + "Get squared sum of all pixels in each layer" + + v = [] + for i in range(0, len(self.h), 256): + sum2 = 0.0 + for j in range(256): + sum2 += (j ** 2) * float(self.h[i + j]) + v.append(sum2) + return v + + def _getmean(self): + "Get average pixel level for each layer" + + v = [] + for i in self.bands: + v.append(self.sum[i] / self.count[i]) + return v + + def _getmedian(self): + "Get median pixel level for each layer" + + v = [] + for i in self.bands: + s = 0 + l = self.count[i]//2 + b = i * 256 + for j in range(256): + s = s + self.h[b+j] + if s > l: + break + v.append(j) + return v + + def _getrms(self): + "Get RMS for each layer" + + v = [] + for i in self.bands: + v.append(math.sqrt(self.sum2[i] / self.count[i])) + return v + + def _getvar(self): + "Get variance for each layer" + + v = [] + for i in self.bands: + n = self.count[i] + v.append((self.sum2[i]-(self.sum[i]**2.0)/n)/n) + return v + + def _getstddev(self): + "Get standard deviation for each layer" + + v = [] + for i in self.bands: + v.append(math.sqrt(self.var[i])) + return v + +Global = Stat # compatibility |