summaryrefslogtreecommitdiffstats
path: root/lib/Python/Lib/PIL/ImageStat.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Python/Lib/PIL/ImageStat.py')
-rw-r--r--lib/Python/Lib/PIL/ImageStat.py147
1 files changed, 147 insertions, 0 deletions
diff --git a/lib/Python/Lib/PIL/ImageStat.py b/lib/Python/Lib/PIL/ImageStat.py
new file mode 100644
index 000000000..7e023c673
--- /dev/null
+++ b/lib/Python/Lib/PIL/ImageStat.py
@@ -0,0 +1,147 @@
+#
+# The Python Imaging Library.
+# $Id$
+#
+# global image statistics
+#
+# History:
+# 1996-04-05 fl Created
+# 1997-05-21 fl Added mask; added rms, var, stddev attributes
+# 1997-08-05 fl Added median
+# 1998-07-05 hk Fixed integer overflow error
+#
+# Notes:
+# This class shows how to implement delayed evaluation of attributes.
+# To get a certain value, simply access the corresponding attribute.
+# The __getattr__ dispatcher takes care of the rest.
+#
+# Copyright (c) Secret Labs AB 1997.
+# Copyright (c) Fredrik Lundh 1996-97.
+#
+# See the README file for information on usage and redistribution.
+#
+
+import math
+import operator
+from functools import reduce
+
+
+class Stat:
+
+ def __init__(self, image_or_list, mask=None):
+ try:
+ if mask:
+ self.h = image_or_list.histogram(mask)
+ else:
+ self.h = image_or_list.histogram()
+ except AttributeError:
+ self.h = image_or_list # assume it to be a histogram list
+ if not isinstance(self.h, list):
+ raise TypeError("first argument must be image or list")
+ self.bands = list(range(len(self.h) // 256))
+
+ def __getattr__(self, id):
+ "Calculate missing attribute"
+ if id[:4] == "_get":
+ raise AttributeError(id)
+ # calculate missing attribute
+ v = getattr(self, "_get" + id)()
+ setattr(self, id, v)
+ return v
+
+ def _getextrema(self):
+ "Get min/max values for each band in the image"
+
+ def minmax(histogram):
+ n = 255
+ x = 0
+ for i in range(256):
+ if histogram[i]:
+ n = min(n, i)
+ x = max(x, i)
+ return n, x # returns (255, 0) if there's no data in the histogram
+
+ v = []
+ for i in range(0, len(self.h), 256):
+ v.append(minmax(self.h[i:]))
+ return v
+
+ def _getcount(self):
+ "Get total number of pixels in each layer"
+
+ v = []
+ for i in range(0, len(self.h), 256):
+ v.append(reduce(operator.add, self.h[i:i+256]))
+ return v
+
+ def _getsum(self):
+ "Get sum of all pixels in each layer"
+
+ v = []
+ for i in range(0, len(self.h), 256):
+ sum = 0.0
+ for j in range(256):
+ sum += j * self.h[i + j]
+ v.append(sum)
+ return v
+
+ def _getsum2(self):
+ "Get squared sum of all pixels in each layer"
+
+ v = []
+ for i in range(0, len(self.h), 256):
+ sum2 = 0.0
+ for j in range(256):
+ sum2 += (j ** 2) * float(self.h[i + j])
+ v.append(sum2)
+ return v
+
+ def _getmean(self):
+ "Get average pixel level for each layer"
+
+ v = []
+ for i in self.bands:
+ v.append(self.sum[i] / self.count[i])
+ return v
+
+ def _getmedian(self):
+ "Get median pixel level for each layer"
+
+ v = []
+ for i in self.bands:
+ s = 0
+ l = self.count[i]//2
+ b = i * 256
+ for j in range(256):
+ s = s + self.h[b+j]
+ if s > l:
+ break
+ v.append(j)
+ return v
+
+ def _getrms(self):
+ "Get RMS for each layer"
+
+ v = []
+ for i in self.bands:
+ v.append(math.sqrt(self.sum2[i] / self.count[i]))
+ return v
+
+ def _getvar(self):
+ "Get variance for each layer"
+
+ v = []
+ for i in self.bands:
+ n = self.count[i]
+ v.append((self.sum2[i]-(self.sum[i]**2.0)/n)/n)
+ return v
+
+ def _getstddev(self):
+ "Get standard deviation for each layer"
+
+ v = []
+ for i in self.bands:
+ v.append(math.sqrt(self.var[i]))
+ return v
+
+Global = Stat # compatibility