diff options
Diffstat (limited to 'lib/Python/Lib/Crypto/SelfTest/PublicKey')
-rw-r--r-- | lib/Python/Lib/Crypto/SelfTest/PublicKey/__init__.py | 44 | ||||
-rw-r--r-- | lib/Python/Lib/Crypto/SelfTest/PublicKey/test_DSA.py | 244 | ||||
-rw-r--r-- | lib/Python/Lib/Crypto/SelfTest/PublicKey/test_ElGamal.py | 210 | ||||
-rw-r--r-- | lib/Python/Lib/Crypto/SelfTest/PublicKey/test_RSA.py | 415 | ||||
-rw-r--r-- | lib/Python/Lib/Crypto/SelfTest/PublicKey/test_importKey.py | 345 |
5 files changed, 1258 insertions, 0 deletions
diff --git a/lib/Python/Lib/Crypto/SelfTest/PublicKey/__init__.py b/lib/Python/Lib/Crypto/SelfTest/PublicKey/__init__.py new file mode 100644 index 000000000..61ba53f29 --- /dev/null +++ b/lib/Python/Lib/Crypto/SelfTest/PublicKey/__init__.py @@ -0,0 +1,44 @@ +# -*- coding: utf-8 -*- +# +# SelfTest/PublicKey/__init__.py: Self-test for public key crypto +# +# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net> +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +"""Self-test for public-key crypto""" + +__revision__ = "$Id$" + +import os + +def get_tests(config={}): + tests = [] + from Crypto.SelfTest.PublicKey import test_DSA; tests += test_DSA.get_tests(config=config) + from Crypto.SelfTest.PublicKey import test_RSA; tests += test_RSA.get_tests(config=config) + from Crypto.SelfTest.PublicKey import test_importKey; tests += test_importKey.get_tests(config=config) + from Crypto.SelfTest.PublicKey import test_ElGamal; tests += test_ElGamal.get_tests(config=config) + return tests + +if __name__ == '__main__': + import unittest + suite = lambda: unittest.TestSuite(get_tests()) + unittest.main(defaultTest='suite') + +# vim:set ts=4 sw=4 sts=4 expandtab: diff --git a/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_DSA.py b/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_DSA.py new file mode 100644 index 000000000..b05f69acc --- /dev/null +++ b/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_DSA.py @@ -0,0 +1,244 @@ +# -*- coding: utf-8 -*- +# +# SelfTest/PublicKey/test_DSA.py: Self-test for the DSA primitive +# +# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net> +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +"""Self-test suite for Crypto.PublicKey.DSA""" + +__revision__ = "$Id$" + +import sys +import os +if sys.version_info[0] == 2 and sys.version_info[1] == 1: + from Crypto.Util.py21compat import * +from Crypto.Util.py3compat import * + +import unittest +from Crypto.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex + +def _sws(s): + """Remove whitespace from a text or byte string""" + if isinstance(s,str): + return "".join(s.split()) + else: + return b("").join(s.split()) + +class DSATest(unittest.TestCase): + # Test vector from "Appendix 5. Example of the DSA" of + # "Digital Signature Standard (DSS)", + # U.S. Department of Commerce/National Institute of Standards and Technology + # FIPS 186-2 (+Change Notice), 2000 January 27. + # http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf + + y = _sws("""19131871 d75b1612 a819f29d 78d1b0d7 346f7aa7 7bb62a85 + 9bfd6c56 75da9d21 2d3a36ef 1672ef66 0b8c7c25 5cc0ec74 + 858fba33 f44c0669 9630a76b 030ee333""") + + g = _sws("""626d0278 39ea0a13 413163a5 5b4cb500 299d5522 956cefcb + 3bff10f3 99ce2c2e 71cb9de5 fa24babf 58e5b795 21925c9c + c42e9f6f 464b088c c572af53 e6d78802""") + + p = _sws("""8df2a494 492276aa 3d25759b b06869cb eac0d83a fb8d0cf7 + cbb8324f 0d7882e5 d0762fc5 b7210eaf c2e9adac 32ab7aac + 49693dfb f83724c2 ec0736ee 31c80291""") + + q = _sws("""c773218c 737ec8ee 993b4f2d ed30f48e dace915f""") + + x = _sws("""2070b322 3dba372f de1c0ffc 7b2e3b49 8b260614""") + + k = _sws("""358dad57 1462710f 50e254cf 1a376b2b deaadfbf""") + k_inverse = _sws("""0d516729 8202e49b 4116ac10 4fc3f415 ae52f917""") + m = b2a_hex(b("abc")) + m_hash = _sws("""a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d""") + r = _sws("""8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0""") + s = _sws("""41e2345f 1f56df24 58f426d1 55b4ba2d b6dcd8c8""") + + def setUp(self): + global DSA, Random, bytes_to_long, size + from Crypto.PublicKey import DSA + from Crypto import Random + from Crypto.Util.number import bytes_to_long, inverse, size + + self.dsa = DSA + + def test_generate_1arg(self): + """DSA (default implementation) generated key (1 argument)""" + dsaObj = self.dsa.generate(1024) + self._check_private_key(dsaObj) + pub = dsaObj.publickey() + self._check_public_key(pub) + + def test_generate_2arg(self): + """DSA (default implementation) generated key (2 arguments)""" + dsaObj = self.dsa.generate(1024, Random.new().read) + self._check_private_key(dsaObj) + pub = dsaObj.publickey() + self._check_public_key(pub) + + def test_construct_4tuple(self): + """DSA (default implementation) constructed key (4-tuple)""" + (y, g, p, q) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q)] + dsaObj = self.dsa.construct((y, g, p, q)) + self._test_verification(dsaObj) + + def test_construct_5tuple(self): + """DSA (default implementation) constructed key (5-tuple)""" + (y, g, p, q, x) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q, self.x)] + dsaObj = self.dsa.construct((y, g, p, q, x)) + self._test_signing(dsaObj) + self._test_verification(dsaObj) + + def _check_private_key(self, dsaObj): + # Check capabilities + self.assertEqual(1, dsaObj.has_private()) + self.assertEqual(1, dsaObj.can_sign()) + self.assertEqual(0, dsaObj.can_encrypt()) + self.assertEqual(0, dsaObj.can_blind()) + + # Check dsaObj.[ygpqx] -> dsaObj.key.[ygpqx] mapping + self.assertEqual(dsaObj.y, dsaObj.key.y) + self.assertEqual(dsaObj.g, dsaObj.key.g) + self.assertEqual(dsaObj.p, dsaObj.key.p) + self.assertEqual(dsaObj.q, dsaObj.key.q) + self.assertEqual(dsaObj.x, dsaObj.key.x) + + # Sanity check key data + self.assertEqual(1, dsaObj.p > dsaObj.q) # p > q + self.assertEqual(160, size(dsaObj.q)) # size(q) == 160 bits + self.assertEqual(0, (dsaObj.p - 1) % dsaObj.q) # q is a divisor of p-1 + self.assertEqual(dsaObj.y, pow(dsaObj.g, dsaObj.x, dsaObj.p)) # y == g**x mod p + self.assertEqual(1, 0 < dsaObj.x < dsaObj.q) # 0 < x < q + + def _check_public_key(self, dsaObj): + k = a2b_hex(self.k) + m_hash = a2b_hex(self.m_hash) + + # Check capabilities + self.assertEqual(0, dsaObj.has_private()) + self.assertEqual(1, dsaObj.can_sign()) + self.assertEqual(0, dsaObj.can_encrypt()) + self.assertEqual(0, dsaObj.can_blind()) + + # Check dsaObj.[ygpq] -> dsaObj.key.[ygpq] mapping + self.assertEqual(dsaObj.y, dsaObj.key.y) + self.assertEqual(dsaObj.g, dsaObj.key.g) + self.assertEqual(dsaObj.p, dsaObj.key.p) + self.assertEqual(dsaObj.q, dsaObj.key.q) + + # Check that private parameters are all missing + self.assertEqual(0, hasattr(dsaObj, 'x')) + self.assertEqual(0, hasattr(dsaObj.key, 'x')) + + # Sanity check key data + self.assertEqual(1, dsaObj.p > dsaObj.q) # p > q + self.assertEqual(160, size(dsaObj.q)) # size(q) == 160 bits + self.assertEqual(0, (dsaObj.p - 1) % dsaObj.q) # q is a divisor of p-1 + + # Public-only key objects should raise an error when .sign() is called + self.assertRaises(TypeError, dsaObj.sign, m_hash, k) + + # Check __eq__ and __ne__ + self.assertEqual(dsaObj.publickey() == dsaObj.publickey(),True) # assert_ + self.assertEqual(dsaObj.publickey() != dsaObj.publickey(),False) # failIf + + def _test_signing(self, dsaObj): + k = a2b_hex(self.k) + m_hash = a2b_hex(self.m_hash) + r = bytes_to_long(a2b_hex(self.r)) + s = bytes_to_long(a2b_hex(self.s)) + (r_out, s_out) = dsaObj.sign(m_hash, k) + self.assertEqual((r, s), (r_out, s_out)) + + def _test_verification(self, dsaObj): + m_hash = a2b_hex(self.m_hash) + r = bytes_to_long(a2b_hex(self.r)) + s = bytes_to_long(a2b_hex(self.s)) + self.assertEqual(1, dsaObj.verify(m_hash, (r, s))) + self.assertEqual(0, dsaObj.verify(m_hash + b("\0"), (r, s))) + +class DSAFastMathTest(DSATest): + def setUp(self): + DSATest.setUp(self) + self.dsa = DSA.DSAImplementation(use_fast_math=True) + + def test_generate_1arg(self): + """DSA (_fastmath implementation) generated key (1 argument)""" + DSATest.test_generate_1arg(self) + + def test_generate_2arg(self): + """DSA (_fastmath implementation) generated key (2 arguments)""" + DSATest.test_generate_2arg(self) + + def test_construct_4tuple(self): + """DSA (_fastmath implementation) constructed key (4-tuple)""" + DSATest.test_construct_4tuple(self) + + def test_construct_5tuple(self): + """DSA (_fastmath implementation) constructed key (5-tuple)""" + DSATest.test_construct_5tuple(self) + +class DSASlowMathTest(DSATest): + def setUp(self): + DSATest.setUp(self) + self.dsa = DSA.DSAImplementation(use_fast_math=False) + + def test_generate_1arg(self): + """DSA (_slowmath implementation) generated key (1 argument)""" + DSATest.test_generate_1arg(self) + + def test_generate_2arg(self): + """DSA (_slowmath implementation) generated key (2 arguments)""" + DSATest.test_generate_2arg(self) + + def test_construct_4tuple(self): + """DSA (_slowmath implementation) constructed key (4-tuple)""" + DSATest.test_construct_4tuple(self) + + def test_construct_5tuple(self): + """DSA (_slowmath implementation) constructed key (5-tuple)""" + DSATest.test_construct_5tuple(self) + + +def get_tests(config={}): + tests = [] + tests += list_test_cases(DSATest) + try: + from Crypto.PublicKey import _fastmath + tests += list_test_cases(DSAFastMathTest) + except ImportError: + from distutils.sysconfig import get_config_var + import inspect + _fm_path = os.path.normpath(os.path.dirname(os.path.abspath( + inspect.getfile(inspect.currentframe()))) + +"/../../PublicKey/_fastmath"+get_config_var("SO")) + if os.path.exists(_fm_path): + raise ImportError("While the _fastmath module exists, importing "+ + "it failed. This may point to the gmp or mpir shared library "+ + "not being in the path. _fastmath was found at "+_fm_path) + tests += list_test_cases(DSASlowMathTest) + return tests + +if __name__ == '__main__': + suite = lambda: unittest.TestSuite(get_tests()) + unittest.main(defaultTest='suite') + +# vim:set ts=4 sw=4 sts=4 expandtab: diff --git a/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_ElGamal.py b/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_ElGamal.py new file mode 100644 index 000000000..cdee8cf67 --- /dev/null +++ b/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_ElGamal.py @@ -0,0 +1,210 @@ +# -*- coding: utf-8 -*- +# +# SelfTest/PublicKey/test_ElGamal.py: Self-test for the ElGamal primitive +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +"""Self-test suite for Crypto.PublicKey.ElGamal""" + +__revision__ = "$Id$" + +import unittest +from Crypto.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex +from Crypto import Random +from Crypto.PublicKey import ElGamal +from Crypto.Util.number import * +from Crypto.Util.py3compat import * + +class ElGamalTest(unittest.TestCase): + + # + # Test vectors + # + # There seem to be no real ElGamal test vectors available in the + # public domain. The following test vectors have been generated + # with libgcrypt 1.5.0. + # + # Encryption + tve=[ + { + # 256 bits + 'p' :'BA4CAEAAED8CBE952AFD2126C63EB3B345D65C2A0A73D2A3AD4138B6D09BD933', + 'g' :'05', + 'y' :'60D063600ECED7C7C55146020E7A31C4476E9793BEAED420FEC9E77604CAE4EF', + 'x' :'1D391BA2EE3C37FE1BA175A69B2C73A11238AD77675932', + 'k' :'F5893C5BAB4131264066F57AB3D8AD89E391A0B68A68A1', + 'pt' :'48656C6C6F207468657265', + 'ct1':'32BFD5F487966CEA9E9356715788C491EC515E4ED48B58F0F00971E93AAA5EC7', + 'ct2':'7BE8FBFF317C93E82FCEF9BD515284BA506603FEA25D01C0CB874A31F315EE68' + }, + + { + # 512 bits + 'p' :'F1B18AE9F7B4E08FDA9A04832F4E919D89462FD31BF12F92791A93519F75076D6CE3942689CDFF2F344CAFF0F82D01864F69F3AECF566C774CBACF728B81A227', + 'g' :'07', + 'y' :'688628C676E4F05D630E1BE39D0066178CA7AA83836B645DE5ADD359B4825A12B02EF4252E4E6FA9BEC1DB0BE90F6D7C8629CABB6E531F472B2664868156E20C', + 'x' :'14E60B1BDFD33436C0DA8A22FDC14A2CCDBBED0627CE68', + 'k' :'38DBF14E1F319BDA9BAB33EEEADCAF6B2EA5250577ACE7', + 'pt' :'48656C6C6F207468657265', + 'ct1':'290F8530C2CC312EC46178724F196F308AD4C523CEABB001FACB0506BFED676083FE0F27AC688B5C749AB3CB8A80CD6F7094DBA421FB19442F5A413E06A9772B', + 'ct2':'1D69AAAD1DC50493FB1B8E8721D621D683F3BF1321BE21BC4A43E11B40C9D4D9C80DE3AAC2AB60D31782B16B61112E68220889D53C4C3136EE6F6CE61F8A23A0' + } + ] + + # Signature + tvs=[ + { + # 256 bits + 'p' :'D2F3C41EA66530838A704A48FFAC9334F4701ECE3A97CEE4C69DD01AE7129DD7', + 'g' :'05', + 'y' :'C3F9417DC0DAFEA6A05C1D2333B7A95E63B3F4F28CC962254B3256984D1012E7', + 'x' :'165E4A39BE44D5A2D8B1332D416BC559616F536BC735BB', + 'k' :'C7F0C794A7EAD726E25A47FF8928013680E73C51DD3D7D99BFDA8F492585928F', + 'h' :'48656C6C6F207468657265', + 'sig1':'35CA98133779E2073EF31165AFCDEB764DD54E96ADE851715495F9C635E1E7C2', + 'sig2':'0135B88B1151279FE5D8078D4FC685EE81177EE9802AB123A73925FC1CB059A7', + }, + { + # 512 bits + 'p' :'E24CF3A4B8A6AF749DCA6D714282FE4AABEEE44A53BB6ED15FBE32B5D3C3EF9CC4124A2ECA331F3C1C1B667ACA3766825217E7B5F9856648D95F05330C6A19CF', + 'g' :'0B', + 'y' :'2AD3A1049CA5D4ED207B2431C79A8719BB4073D4A94E450EA6CEE8A760EB07ADB67C0D52C275EE85D7B52789061EE45F2F37D9B2AE522A51C28329766BFE68AC', + 'x' :'16CBB4F46D9ECCF24FF9F7E63CAA3BD8936341555062AB', + 'k' :'8A3D89A4E429FD2476D7D717251FB79BF900FFE77444E6BB8299DC3F84D0DD57ABAB50732AE158EA52F5B9E7D8813E81FD9F79470AE22F8F1CF9AEC820A78C69', + 'h' :'48656C6C6F207468657265', + 'sig1':'BE001AABAFFF976EC9016198FBFEA14CBEF96B000CCC0063D3324016F9E91FE80D8F9325812ED24DDB2B4D4CF4430B169880B3CE88313B53255BD4EC0378586F', + 'sig2':'5E266F3F837BA204E3BBB6DBECC0611429D96F8C7CE8F4EFDF9D4CB681C2A954468A357BF4242CEC7418B51DFC081BCD21299EF5B5A0DDEF3A139A1817503DDE', + } + ] + + def test_generate_128(self): + self._test_random_key(128) + + def test_generate_512(self): + self._test_random_key(512) + + def test_encryption(self): + for tv in self.tve: + for as_longs in (0,1): + d = self.convert_tv(tv, as_longs) + key = ElGamal.construct(d['key']) + ct = key.encrypt(d['pt'], d['k']) + self.assertEquals(ct[0], d['ct1']) + self.assertEquals(ct[1], d['ct2']) + + def test_decryption(self): + for tv in self.tve: + for as_longs in (0,1): + d = self.convert_tv(tv, as_longs) + key = ElGamal.construct(d['key']) + pt = key.decrypt((d['ct1'], d['ct2'])) + self.assertEquals(pt, d['pt']) + + def test_signing(self): + for tv in self.tvs: + for as_longs in (0,1): + d = self.convert_tv(tv, as_longs) + key = ElGamal.construct(d['key']) + sig1, sig2 = key.sign(d['h'], d['k']) + self.assertEquals(sig1, d['sig1']) + self.assertEquals(sig2, d['sig2']) + + def test_verification(self): + for tv in self.tvs: + for as_longs in (0,1): + d = self.convert_tv(tv, as_longs) + key = ElGamal.construct(d['key']) + # Positive test + res = key.verify( d['h'], (d['sig1'],d['sig2']) ) + self.failUnless(res) + # Negative test + res = key.verify( d['h'], (d['sig1']+1,d['sig2']) ) + self.failIf(res) + + def convert_tv(self, tv, as_longs=0): + """Convert a test vector from textual form (hexadecimal ascii + to either integers or byte strings.""" + key_comps = 'p','g','y','x' + tv2 = {} + for c in tv.keys(): + tv2[c] = a2b_hex(tv[c]) + if as_longs or c in key_comps or c in ('sig1','sig2'): + tv2[c] = bytes_to_long(tv2[c]) + tv2['key']=[] + for c in key_comps: + tv2['key'] += [tv2[c]] + del tv2[c] + return tv2 + + def _test_random_key(self, bits): + elgObj = ElGamal.generate(bits, Random.new().read) + self._check_private_key(elgObj) + self._exercise_primitive(elgObj) + pub = elgObj.publickey() + self._check_public_key(pub) + self._exercise_public_primitive(elgObj) + + def _check_private_key(self, elgObj): + + # Check capabilities + self.failUnless(elgObj.has_private()) + self.failUnless(elgObj.can_sign()) + self.failUnless(elgObj.can_encrypt()) + + # Sanity check key data + self.failUnless(1<elgObj.g<(elgObj.p-1)) + self.assertEquals(pow(elgObj.g, elgObj.p-1, elgObj.p), 1) + self.failUnless(1<elgObj.x<(elgObj.p-1)) + self.assertEquals(pow(elgObj.g, elgObj.x, elgObj.p), elgObj.y) + + def _check_public_key(self, elgObj): + + # Check capabilities + self.failIf(elgObj.has_private()) + self.failUnless(elgObj.can_sign()) + self.failUnless(elgObj.can_encrypt()) + + # Sanity check key data + self.failUnless(1<elgObj.g<(elgObj.p-1)) + self.assertEquals(pow(elgObj.g, elgObj.p-1, elgObj.p), 1) + + def _exercise_primitive(self, elgObj): + # Test encryption/decryption + plaintext = b("Test") + ciphertext = elgObj.encrypt(plaintext, 123456789L) + plaintextP = elgObj.decrypt(ciphertext) + self.assertEquals(plaintext, plaintextP) + + # Test signature/verification + signature = elgObj.sign(plaintext, 987654321L) + elgObj.verify(plaintext, signature) + + def _exercise_public_primitive(self, elgObj): + plaintext = b("Test") + ciphertext = elgObj.encrypt(plaintext, 123456789L) + +def get_tests(config={}): + tests = [] + tests += list_test_cases(ElGamalTest) + return tests + +if __name__ == '__main__': + suite = lambda: unittest.TestSuite(get_tests()) + unittest.main(defaultTest='suite') + diff --git a/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_RSA.py b/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_RSA.py new file mode 100644 index 000000000..c971042b2 --- /dev/null +++ b/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_RSA.py @@ -0,0 +1,415 @@ +# -*- coding: utf-8 -*- +# +# SelfTest/PublicKey/test_RSA.py: Self-test for the RSA primitive +# +# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net> +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +"""Self-test suite for Crypto.PublicKey.RSA""" + +__revision__ = "$Id$" + +import sys +import os +if sys.version_info[0] == 2 and sys.version_info[1] == 1: + from Crypto.Util.py21compat import * +from Crypto.Util.py3compat import * + +import unittest +from Crypto.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex + +class RSATest(unittest.TestCase): + # Test vectors from "RSA-OAEP and RSA-PSS test vectors (.zip file)" + # ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip + # See RSADSI's PKCS#1 page at + # http://www.rsa.com/rsalabs/node.asp?id=2125 + + # from oaep-int.txt + + # TODO: PyCrypto treats the message as starting *after* the leading "00" + # TODO: That behaviour should probably be changed in the future. + plaintext = """ + eb 7a 19 ac e9 e3 00 63 50 e3 29 50 4b 45 e2 + ca 82 31 0b 26 dc d8 7d 5c 68 f1 ee a8 f5 52 67 + c3 1b 2e 8b b4 25 1f 84 d7 e0 b2 c0 46 26 f5 af + f9 3e dc fb 25 c9 c2 b3 ff 8a e1 0e 83 9a 2d db + 4c dc fe 4f f4 77 28 b4 a1 b7 c1 36 2b aa d2 9a + b4 8d 28 69 d5 02 41 21 43 58 11 59 1b e3 92 f9 + 82 fb 3e 87 d0 95 ae b4 04 48 db 97 2f 3a c1 4f + 7b c2 75 19 52 81 ce 32 d2 f1 b7 6d 4d 35 3e 2d + """ + + ciphertext = """ + 12 53 e0 4d c0 a5 39 7b b4 4a 7a b8 7e 9b f2 a0 + 39 a3 3d 1e 99 6f c8 2a 94 cc d3 00 74 c9 5d f7 + 63 72 20 17 06 9e 52 68 da 5d 1c 0b 4f 87 2c f6 + 53 c1 1d f8 23 14 a6 79 68 df ea e2 8d ef 04 bb + 6d 84 b1 c3 1d 65 4a 19 70 e5 78 3b d6 eb 96 a0 + 24 c2 ca 2f 4a 90 fe 9f 2e f5 c9 c1 40 e5 bb 48 + da 95 36 ad 87 00 c8 4f c9 13 0a de a7 4e 55 8d + 51 a7 4d df 85 d8 b5 0d e9 68 38 d6 06 3e 09 55 + """ + + modulus = """ + bb f8 2f 09 06 82 ce 9c 23 38 ac 2b 9d a8 71 f7 + 36 8d 07 ee d4 10 43 a4 40 d6 b6 f0 74 54 f5 1f + b8 df ba af 03 5c 02 ab 61 ea 48 ce eb 6f cd 48 + 76 ed 52 0d 60 e1 ec 46 19 71 9d 8a 5b 8b 80 7f + af b8 e0 a3 df c7 37 72 3e e6 b4 b7 d9 3a 25 84 + ee 6a 64 9d 06 09 53 74 88 34 b2 45 45 98 39 4e + e0 aa b1 2d 7b 61 a5 1f 52 7a 9a 41 f6 c1 68 7f + e2 53 72 98 ca 2a 8f 59 46 f8 e5 fd 09 1d bd cb + """ + + e = 0x11L # public exponent + + prime_factor = """ + c9 7f b1 f0 27 f4 53 f6 34 12 33 ea aa d1 d9 35 + 3f 6c 42 d0 88 66 b1 d0 5a 0f 20 35 02 8b 9d 86 + 98 40 b4 16 66 b4 2e 92 ea 0d a3 b4 32 04 b5 cf + ce 33 52 52 4d 04 16 a5 a4 41 e7 00 af 46 15 03 + """ + + def setUp(self): + global RSA, Random, bytes_to_long + from Crypto.PublicKey import RSA + from Crypto import Random + from Crypto.Util.number import bytes_to_long, inverse + self.n = bytes_to_long(a2b_hex(self.modulus)) + self.p = bytes_to_long(a2b_hex(self.prime_factor)) + + # Compute q, d, and u from n, e, and p + self.q = divmod(self.n, self.p)[0] + self.d = inverse(self.e, (self.p-1)*(self.q-1)) + self.u = inverse(self.p, self.q) # u = e**-1 (mod q) + + self.rsa = RSA + + def test_generate_1arg(self): + """RSA (default implementation) generated key (1 argument)""" + rsaObj = self.rsa.generate(1024) + self._check_private_key(rsaObj) + self._exercise_primitive(rsaObj) + pub = rsaObj.publickey() + self._check_public_key(pub) + self._exercise_public_primitive(rsaObj) + + def test_generate_2arg(self): + """RSA (default implementation) generated key (2 arguments)""" + rsaObj = self.rsa.generate(1024, Random.new().read) + self._check_private_key(rsaObj) + self._exercise_primitive(rsaObj) + pub = rsaObj.publickey() + self._check_public_key(pub) + self._exercise_public_primitive(rsaObj) + + def test_generate_3args(self): + rsaObj = self.rsa.generate(1024, Random.new().read,e=65537) + self._check_private_key(rsaObj) + self._exercise_primitive(rsaObj) + pub = rsaObj.publickey() + self._check_public_key(pub) + self._exercise_public_primitive(rsaObj) + self.assertEqual(65537,rsaObj.e) + + def test_construct_2tuple(self): + """RSA (default implementation) constructed key (2-tuple)""" + pub = self.rsa.construct((self.n, self.e)) + self._check_public_key(pub) + self._check_encryption(pub) + self._check_verification(pub) + + def test_construct_3tuple(self): + """RSA (default implementation) constructed key (3-tuple)""" + rsaObj = self.rsa.construct((self.n, self.e, self.d)) + self._check_encryption(rsaObj) + self._check_decryption(rsaObj) + self._check_signing(rsaObj) + self._check_verification(rsaObj) + + def test_construct_4tuple(self): + """RSA (default implementation) constructed key (4-tuple)""" + rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p)) + self._check_encryption(rsaObj) + self._check_decryption(rsaObj) + self._check_signing(rsaObj) + self._check_verification(rsaObj) + + def test_construct_5tuple(self): + """RSA (default implementation) constructed key (5-tuple)""" + rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q)) + self._check_private_key(rsaObj) + self._check_encryption(rsaObj) + self._check_decryption(rsaObj) + self._check_signing(rsaObj) + self._check_verification(rsaObj) + + def test_construct_6tuple(self): + """RSA (default implementation) constructed key (6-tuple)""" + rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q, self.u)) + self._check_private_key(rsaObj) + self._check_encryption(rsaObj) + self._check_decryption(rsaObj) + self._check_signing(rsaObj) + self._check_verification(rsaObj) + + def test_factoring(self): + rsaObj = self.rsa.construct([self.n, self.e, self.d]) + self.failUnless(rsaObj.p==self.p or rsaObj.p==self.q) + self.failUnless(rsaObj.q==self.p or rsaObj.q==self.q) + self.failUnless(rsaObj.q*rsaObj.p == self.n) + + self.assertRaises(ValueError, self.rsa.construct, [self.n, self.e, self.n-1]) + + def _check_private_key(self, rsaObj): + # Check capabilities + self.assertEqual(1, rsaObj.has_private()) + self.assertEqual(1, rsaObj.can_sign()) + self.assertEqual(1, rsaObj.can_encrypt()) + self.assertEqual(1, rsaObj.can_blind()) + + # Check rsaObj.[nedpqu] -> rsaObj.key.[nedpqu] mapping + self.assertEqual(rsaObj.n, rsaObj.key.n) + self.assertEqual(rsaObj.e, rsaObj.key.e) + self.assertEqual(rsaObj.d, rsaObj.key.d) + self.assertEqual(rsaObj.p, rsaObj.key.p) + self.assertEqual(rsaObj.q, rsaObj.key.q) + self.assertEqual(rsaObj.u, rsaObj.key.u) + + # Sanity check key data + self.assertEqual(rsaObj.n, rsaObj.p * rsaObj.q) # n = pq + self.assertEqual(1, rsaObj.d * rsaObj.e % ((rsaObj.p-1) * (rsaObj.q-1))) # ed = 1 (mod (p-1)(q-1)) + self.assertEqual(1, rsaObj.p * rsaObj.u % rsaObj.q) # pu = 1 (mod q) + self.assertEqual(1, rsaObj.p > 1) # p > 1 + self.assertEqual(1, rsaObj.q > 1) # q > 1 + self.assertEqual(1, rsaObj.e > 1) # e > 1 + self.assertEqual(1, rsaObj.d > 1) # d > 1 + + def _check_public_key(self, rsaObj): + ciphertext = a2b_hex(self.ciphertext) + + # Check capabilities + self.assertEqual(0, rsaObj.has_private()) + self.assertEqual(1, rsaObj.can_sign()) + self.assertEqual(1, rsaObj.can_encrypt()) + self.assertEqual(1, rsaObj.can_blind()) + + # Check rsaObj.[ne] -> rsaObj.key.[ne] mapping + self.assertEqual(rsaObj.n, rsaObj.key.n) + self.assertEqual(rsaObj.e, rsaObj.key.e) + + # Check that private parameters are all missing + self.assertEqual(0, hasattr(rsaObj, 'd')) + self.assertEqual(0, hasattr(rsaObj, 'p')) + self.assertEqual(0, hasattr(rsaObj, 'q')) + self.assertEqual(0, hasattr(rsaObj, 'u')) + self.assertEqual(0, hasattr(rsaObj.key, 'd')) + self.assertEqual(0, hasattr(rsaObj.key, 'p')) + self.assertEqual(0, hasattr(rsaObj.key, 'q')) + self.assertEqual(0, hasattr(rsaObj.key, 'u')) + + # Sanity check key data + self.assertEqual(1, rsaObj.e > 1) # e > 1 + + # Public keys should not be able to sign or decrypt + self.assertRaises(TypeError, rsaObj.sign, ciphertext, b("")) + self.assertRaises(TypeError, rsaObj.decrypt, ciphertext) + + # Check __eq__ and __ne__ + self.assertEqual(rsaObj.publickey() == rsaObj.publickey(),True) # assert_ + self.assertEqual(rsaObj.publickey() != rsaObj.publickey(),False) # failIf + + def _exercise_primitive(self, rsaObj): + # Since we're using a randomly-generated key, we can't check the test + # vector, but we can make sure encryption and decryption are inverse + # operations. + ciphertext = a2b_hex(self.ciphertext) + + # Test decryption + plaintext = rsaObj.decrypt((ciphertext,)) + + # Test encryption (2 arguments) + (new_ciphertext2,) = rsaObj.encrypt(plaintext, b("")) + self.assertEqual(b2a_hex(ciphertext), b2a_hex(new_ciphertext2)) + + # Test blinded decryption + blinding_factor = Random.new().read(len(ciphertext)-1) + blinded_ctext = rsaObj.blind(ciphertext, blinding_factor) + blinded_ptext = rsaObj.decrypt((blinded_ctext,)) + unblinded_plaintext = rsaObj.unblind(blinded_ptext, blinding_factor) + self.assertEqual(b2a_hex(plaintext), b2a_hex(unblinded_plaintext)) + + # Test signing (2 arguments) + signature2 = rsaObj.sign(ciphertext, b("")) + self.assertEqual((bytes_to_long(plaintext),), signature2) + + # Test verification + self.assertEqual(1, rsaObj.verify(ciphertext, (bytes_to_long(plaintext),))) + + def _exercise_public_primitive(self, rsaObj): + plaintext = a2b_hex(self.plaintext) + + # Test encryption (2 arguments) + (new_ciphertext2,) = rsaObj.encrypt(plaintext, b("")) + + # Exercise verification + rsaObj.verify(new_ciphertext2, (bytes_to_long(plaintext),)) + + def _check_encryption(self, rsaObj): + plaintext = a2b_hex(self.plaintext) + ciphertext = a2b_hex(self.ciphertext) + + # Test encryption (2 arguments) + (new_ciphertext2,) = rsaObj.encrypt(plaintext, b("")) + self.assertEqual(b2a_hex(ciphertext), b2a_hex(new_ciphertext2)) + + def _check_decryption(self, rsaObj): + plaintext = a2b_hex(self.plaintext) + ciphertext = a2b_hex(self.ciphertext) + + # Test plain decryption + new_plaintext = rsaObj.decrypt((ciphertext,)) + self.assertEqual(b2a_hex(plaintext), b2a_hex(new_plaintext)) + + # Test blinded decryption + blinding_factor = Random.new().read(len(ciphertext)-1) + blinded_ctext = rsaObj.blind(ciphertext, blinding_factor) + blinded_ptext = rsaObj.decrypt((blinded_ctext,)) + unblinded_plaintext = rsaObj.unblind(blinded_ptext, blinding_factor) + self.assertEqual(b2a_hex(plaintext), b2a_hex(unblinded_plaintext)) + + def _check_verification(self, rsaObj): + signature = bytes_to_long(a2b_hex(self.plaintext)) + message = a2b_hex(self.ciphertext) + + # Test verification + t = (signature,) # rsaObj.verify expects a tuple + self.assertEqual(1, rsaObj.verify(message, t)) + + # Test verification with overlong tuple (this is a + # backward-compatibility hack to support some harmless misuse of the + # API) + t2 = (signature, '') + self.assertEqual(1, rsaObj.verify(message, t2)) # extra garbage at end of tuple + + def _check_signing(self, rsaObj): + signature = bytes_to_long(a2b_hex(self.plaintext)) + message = a2b_hex(self.ciphertext) + + # Test signing (2 argument) + self.assertEqual((signature,), rsaObj.sign(message, b(""))) + +class RSAFastMathTest(RSATest): + def setUp(self): + RSATest.setUp(self) + self.rsa = RSA.RSAImplementation(use_fast_math=True) + + def test_generate_1arg(self): + """RSA (_fastmath implementation) generated key (1 argument)""" + RSATest.test_generate_1arg(self) + + def test_generate_2arg(self): + """RSA (_fastmath implementation) generated key (2 arguments)""" + RSATest.test_generate_2arg(self) + + def test_construct_2tuple(self): + """RSA (_fastmath implementation) constructed key (2-tuple)""" + RSATest.test_construct_2tuple(self) + + def test_construct_3tuple(self): + """RSA (_fastmath implementation) constructed key (3-tuple)""" + RSATest.test_construct_3tuple(self) + + def test_construct_4tuple(self): + """RSA (_fastmath implementation) constructed key (4-tuple)""" + RSATest.test_construct_4tuple(self) + + def test_construct_5tuple(self): + """RSA (_fastmath implementation) constructed key (5-tuple)""" + RSATest.test_construct_5tuple(self) + + def test_construct_6tuple(self): + """RSA (_fastmath implementation) constructed key (6-tuple)""" + RSATest.test_construct_6tuple(self) + + def test_factoring(self): + RSATest.test_factoring(self) + +class RSASlowMathTest(RSATest): + def setUp(self): + RSATest.setUp(self) + self.rsa = RSA.RSAImplementation(use_fast_math=False) + + def test_generate_1arg(self): + """RSA (_slowmath implementation) generated key (1 argument)""" + RSATest.test_generate_1arg(self) + + def test_generate_2arg(self): + """RSA (_slowmath implementation) generated key (2 arguments)""" + RSATest.test_generate_2arg(self) + + def test_construct_2tuple(self): + """RSA (_slowmath implementation) constructed key (2-tuple)""" + RSATest.test_construct_2tuple(self) + + def test_construct_3tuple(self): + """RSA (_slowmath implementation) constructed key (3-tuple)""" + RSATest.test_construct_3tuple(self) + + def test_construct_4tuple(self): + """RSA (_slowmath implementation) constructed key (4-tuple)""" + RSATest.test_construct_4tuple(self) + + def test_construct_5tuple(self): + """RSA (_slowmath implementation) constructed key (5-tuple)""" + RSATest.test_construct_5tuple(self) + + def test_construct_6tuple(self): + """RSA (_slowmath implementation) constructed key (6-tuple)""" + RSATest.test_construct_6tuple(self) + + def test_factoring(self): + RSATest.test_factoring(self) + +def get_tests(config={}): + tests = [] + tests += list_test_cases(RSATest) + try: + from Crypto.PublicKey import _fastmath + tests += list_test_cases(RSAFastMathTest) + except ImportError: + from distutils.sysconfig import get_config_var + import inspect + _fm_path = os.path.normpath(os.path.dirname(os.path.abspath( + inspect.getfile(inspect.currentframe()))) + +"/../../PublicKey/_fastmath"+get_config_var("SO")) + if os.path.exists(_fm_path): + raise ImportError("While the _fastmath module exists, importing "+ + "it failed. This may point to the gmp or mpir shared library "+ + "not being in the path. _fastmath was found at "+_fm_path) + if config.get('slow_tests',1): + tests += list_test_cases(RSASlowMathTest) + return tests + +if __name__ == '__main__': + suite = lambda: unittest.TestSuite(get_tests()) + unittest.main(defaultTest='suite') + +# vim:set ts=4 sw=4 sts=4 expandtab: diff --git a/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_importKey.py b/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_importKey.py new file mode 100644 index 000000000..28a7eee88 --- /dev/null +++ b/lib/Python/Lib/Crypto/SelfTest/PublicKey/test_importKey.py @@ -0,0 +1,345 @@ +# -*- coding: utf-8 -*- +# +# SelfTest/PublicKey/test_importKey.py: Self-test for importing RSA keys +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +from __future__ import nested_scopes + +__revision__ = "$Id$" + +import unittest + +from Crypto.PublicKey import RSA +from Crypto.SelfTest.st_common import * +from Crypto.Util.py3compat import * +from Crypto.Util.number import inverse +from Crypto.Util import asn1 + +def der2pem(der, text='PUBLIC'): + import binascii + chunks = [ binascii.b2a_base64(der[i:i+48]) for i in range(0, len(der), 48) ] + pem = b('-----BEGIN %s KEY-----\n' % text) + pem += b('').join(chunks) + pem += b('-----END %s KEY-----' % text) + return pem + +class ImportKeyTests(unittest.TestCase): + # 512-bit RSA key generated with openssl + rsaKeyPEM = u'''-----BEGIN RSA PRIVATE KEY----- +MIIBOwIBAAJBAL8eJ5AKoIsjURpcEoGubZMxLD7+kT+TLr7UkvEtFrRhDDKMtuII +q19FrL4pUIMymPMSLBn3hJLe30Dw48GQM4UCAwEAAQJACUSDEp8RTe32ftq8IwG8 +Wojl5mAd1wFiIOrZ/Uv8b963WJOJiuQcVN29vxU5+My9GPZ7RA3hrDBEAoHUDPrI +OQIhAPIPLz4dphiD9imAkivY31Rc5AfHJiQRA7XixTcjEkojAiEAyh/pJHks/Mlr ++rdPNEpotBjfV4M4BkgGAA/ipcmaAjcCIQCHvhwwKVBLzzTscT2HeUdEeBMoiXXK +JACAr3sJQJGxIQIgarRp+m1WSKV1MciwMaTOnbU7wxFs9DP1pva76lYBzgUCIQC9 +n0CnZCJ6IZYqSt0H5N7+Q+2Ro64nuwV/OSQfM6sBwQ== +-----END RSA PRIVATE KEY-----''' + + # As above, but this is actually an unencrypted PKCS#8 key + rsaKeyPEM8 = u'''-----BEGIN PRIVATE KEY----- +MIIBVQIBADANBgkqhkiG9w0BAQEFAASCAT8wggE7AgEAAkEAvx4nkAqgiyNRGlwS +ga5tkzEsPv6RP5MuvtSS8S0WtGEMMoy24girX0WsvilQgzKY8xIsGfeEkt7fQPDj +wZAzhQIDAQABAkAJRIMSnxFN7fZ+2rwjAbxaiOXmYB3XAWIg6tn9S/xv3rdYk4mK +5BxU3b2/FTn4zL0Y9ntEDeGsMEQCgdQM+sg5AiEA8g8vPh2mGIP2KYCSK9jfVFzk +B8cmJBEDteLFNyMSSiMCIQDKH+kkeSz8yWv6t080Smi0GN9XgzgGSAYAD+KlyZoC +NwIhAIe+HDApUEvPNOxxPYd5R0R4EyiJdcokAICvewlAkbEhAiBqtGn6bVZIpXUx +yLAxpM6dtTvDEWz0M/Wm9rvqVgHOBQIhAL2fQKdkInohlipK3Qfk3v5D7ZGjrie7 +BX85JB8zqwHB +-----END PRIVATE KEY-----''' + + # The same RSA private key as in rsaKeyPEM, but now encrypted + rsaKeyEncryptedPEM=( + + # With DES and passphrase 'test' + ('test', u'''-----BEGIN RSA PRIVATE KEY----- +Proc-Type: 4,ENCRYPTED +DEK-Info: DES-CBC,AF8F9A40BD2FA2FC + +Ckl9ex1kaVEWhYC2QBmfaF+YPiR4NFkRXA7nj3dcnuFEzBnY5XULupqQpQI3qbfA +u8GYS7+b3toWWiHZivHbAAUBPDIZG9hKDyB9Sq2VMARGsX1yW1zhNvZLIiVJzUHs +C6NxQ1IJWOXzTew/xM2I26kPwHIvadq+/VaT8gLQdjdH0jOiVNaevjWnLgrn1mLP +BCNRMdcexozWtAFNNqSzfW58MJL2OdMi21ED184EFytIc1BlB+FZiGZduwKGuaKy +9bMbdb/1PSvsSzPsqW7KSSrTw6MgJAFJg6lzIYvR5F4poTVBxwBX3+EyEmShiaNY +IRX3TgQI0IjrVuLmvlZKbGWP18FXj7I7k9tSsNOOzllTTdq3ny5vgM3A+ynfAaxp +dysKznQ6P+IoqML1WxAID4aGRMWka+uArOJ148Rbj9s= +-----END RSA PRIVATE KEY-----''', + "\xAF\x8F\x9A\x40\xBD\x2F\xA2\xFC"), + + # With Triple-DES and passphrase 'rocking' + ('rocking', u'''-----BEGIN RSA PRIVATE KEY----- +Proc-Type: 4,ENCRYPTED +DEK-Info: DES-EDE3-CBC,C05D6C07F7FC02F6 + +w4lwQrXaVoTTJ0GgwY566htTA2/t1YlimhxkxYt9AEeCcidS5M0Wq9ClPiPz9O7F +m6K5QpM1rxo1RUE/ZyI85gglRNPdNwkeTOqit+kum7nN73AToX17+irVmOA4Z9E+ +4O07t91GxGMcjUSIFk0ucwEU4jgxRvYscbvOMvNbuZszGdVNzBTVddnShKCsy9i7 +nJbPlXeEKYi/OkRgO4PtfqqWQu5GIEFVUf9ev1QV7AvC+kyWTR1wWYnHX265jU5c +sopxQQtP8XEHIJEdd5/p1oieRcWTCNyY8EkslxDSsrf0OtZp6mZH9N+KU47cgQtt +9qGORmlWnsIoFFKcDohbtOaWBTKhkj5h6OkLjFjfU/sBeV1c+7wDT3dAy5tawXjG +YSxC7qDQIT/RECvV3+oQKEcmpEujn45wAnkTi12BH30= +-----END RSA PRIVATE KEY-----''', + "\xC0\x5D\x6C\x07\xF7\xFC\x02\xF6"), + ) + + rsaPublicKeyPEM = u'''-----BEGIN PUBLIC KEY----- +MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAL8eJ5AKoIsjURpcEoGubZMxLD7+kT+T +Lr7UkvEtFrRhDDKMtuIIq19FrL4pUIMymPMSLBn3hJLe30Dw48GQM4UCAwEAAQ== +-----END PUBLIC KEY-----''' + + # Obtained using 'ssh-keygen -i -m PKCS8 -f rsaPublicKeyPEM' + rsaPublicKeyOpenSSH = '''ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAQQC/HieQCqCLI1EaXBKBrm2TMSw+/pE/ky6+1JLxLRa0YQwyjLbiCKtfRay+KVCDMpjzEiwZ94SS3t9A8OPBkDOF comment\n''' + + # The private key, in PKCS#1 format encoded with DER + rsaKeyDER = a2b_hex( + '''3082013b020100024100bf1e27900aa08b23511a5c1281ae6d93312c3efe + 913f932ebed492f12d16b4610c328cb6e208ab5f45acbe2950833298f312 + 2c19f78492dedf40f0e3c190338502030100010240094483129f114dedf6 + 7edabc2301bc5a88e5e6601dd7016220ead9fd4bfc6fdeb75893898ae41c + 54ddbdbf1539f8ccbd18f67b440de1ac30440281d40cfac839022100f20f + 2f3e1da61883f62980922bd8df545ce407c726241103b5e2c53723124a23 + 022100ca1fe924792cfcc96bfab74f344a68b418df578338064806000fe2 + a5c99a023702210087be1c3029504bcf34ec713d877947447813288975ca + 240080af7b094091b12102206ab469fa6d5648a57531c8b031a4ce9db53b + c3116cf433f5a6f6bbea5601ce05022100bd9f40a764227a21962a4add07 + e4defe43ed91a3ae27bb057f39241f33ab01c1 + '''.replace(" ","")) + + # The private key, in unencrypted PKCS#8 format encoded with DER + rsaKeyDER8 = a2b_hex( + '''30820155020100300d06092a864886f70d01010105000482013f3082013 + b020100024100bf1e27900aa08b23511a5c1281ae6d93312c3efe913f932 + ebed492f12d16b4610c328cb6e208ab5f45acbe2950833298f3122c19f78 + 492dedf40f0e3c190338502030100010240094483129f114dedf67edabc2 + 301bc5a88e5e6601dd7016220ead9fd4bfc6fdeb75893898ae41c54ddbdb + f1539f8ccbd18f67b440de1ac30440281d40cfac839022100f20f2f3e1da + 61883f62980922bd8df545ce407c726241103b5e2c53723124a23022100c + a1fe924792cfcc96bfab74f344a68b418df578338064806000fe2a5c99a0 + 23702210087be1c3029504bcf34ec713d877947447813288975ca240080a + f7b094091b12102206ab469fa6d5648a57531c8b031a4ce9db53bc3116cf + 433f5a6f6bbea5601ce05022100bd9f40a764227a21962a4add07e4defe4 + 3ed91a3ae27bb057f39241f33ab01c1 + '''.replace(" ","")) + + rsaPublicKeyDER = a2b_hex( + '''305c300d06092a864886f70d0101010500034b003048024100bf1e27900a + a08b23511a5c1281ae6d93312c3efe913f932ebed492f12d16b4610c328c + b6e208ab5f45acbe2950833298f3122c19f78492dedf40f0e3c190338502 + 03010001 + '''.replace(" ","")) + + n = long('BF 1E 27 90 0A A0 8B 23 51 1A 5C 12 81 AE 6D 93 31 2C 3E FE 91 3F 93 2E BE D4 92 F1 2D 16 B4 61 0C 32 8C B6 E2 08 AB 5F 45 AC BE 29 50 83 32 98 F3 12 2C 19 F7 84 92 DE DF 40 F0 E3 C1 90 33 85'.replace(" ",""),16) + e = 65537L + d = long('09 44 83 12 9F 11 4D ED F6 7E DA BC 23 01 BC 5A 88 E5 E6 60 1D D7 01 62 20 EA D9 FD 4B FC 6F DE B7 58 93 89 8A E4 1C 54 DD BD BF 15 39 F8 CC BD 18 F6 7B 44 0D E1 AC 30 44 02 81 D4 0C FA C8 39'.replace(" ",""),16) + p = long('00 F2 0F 2F 3E 1D A6 18 83 F6 29 80 92 2B D8 DF 54 5C E4 07 C7 26 24 11 03 B5 E2 C5 37 23 12 4A 23'.replace(" ",""),16) + q = long('00 CA 1F E9 24 79 2C FC C9 6B FA B7 4F 34 4A 68 B4 18 DF 57 83 38 06 48 06 00 0F E2 A5 C9 9A 02 37'.replace(" ",""),16) + + # This is q^{-1} mod p). fastmath and slowmath use pInv (p^{-1} + # mod q) instead! + qInv = long('00 BD 9F 40 A7 64 22 7A 21 96 2A 4A DD 07 E4 DE FE 43 ED 91 A3 AE 27 BB 05 7F 39 24 1F 33 AB 01 C1'.replace(" ",""),16) + pInv = inverse(p,q) + + def testImportKey1(self): + """Verify import of RSAPrivateKey DER SEQUENCE""" + key = self.rsa.importKey(self.rsaKeyDER) + self.failUnless(key.has_private()) + self.assertEqual(key.n, self.n) + self.assertEqual(key.e, self.e) + self.assertEqual(key.d, self.d) + self.assertEqual(key.p, self.p) + self.assertEqual(key.q, self.q) + + def testImportKey2(self): + """Verify import of SubjectPublicKeyInfo DER SEQUENCE""" + key = self.rsa.importKey(self.rsaPublicKeyDER) + self.failIf(key.has_private()) + self.assertEqual(key.n, self.n) + self.assertEqual(key.e, self.e) + + def testImportKey3unicode(self): + """Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as unicode""" + key = RSA.importKey(self.rsaKeyPEM) + self.assertEqual(key.has_private(),True) # assert_ + self.assertEqual(key.n, self.n) + self.assertEqual(key.e, self.e) + self.assertEqual(key.d, self.d) + self.assertEqual(key.p, self.p) + self.assertEqual(key.q, self.q) + + def testImportKey3bytes(self): + """Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as byte string""" + key = RSA.importKey(b(self.rsaKeyPEM)) + self.assertEqual(key.has_private(),True) # assert_ + self.assertEqual(key.n, self.n) + self.assertEqual(key.e, self.e) + self.assertEqual(key.d, self.d) + self.assertEqual(key.p, self.p) + self.assertEqual(key.q, self.q) + + def testImportKey4unicode(self): + """Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as unicode""" + key = RSA.importKey(self.rsaPublicKeyPEM) + self.assertEqual(key.has_private(),False) # failIf + self.assertEqual(key.n, self.n) + self.assertEqual(key.e, self.e) + + def testImportKey4bytes(self): + """Verify import of SubjectPublicKeyInfo DER SEQUENCE, encoded with PEM as byte string""" + key = RSA.importKey(b(self.rsaPublicKeyPEM)) + self.assertEqual(key.has_private(),False) # failIf + self.assertEqual(key.n, self.n) + self.assertEqual(key.e, self.e) + + def testImportKey5(self): + """Verifies that the imported key is still a valid RSA pair""" + key = RSA.importKey(self.rsaKeyPEM) + idem = key.encrypt(key.decrypt(b("Test")),0) + self.assertEqual(idem[0],b("Test")) + + def testImportKey6(self): + """Verifies that the imported key is still a valid RSA pair""" + key = RSA.importKey(self.rsaKeyDER) + idem = key.encrypt(key.decrypt(b("Test")),0) + self.assertEqual(idem[0],b("Test")) + + def testImportKey7(self): + """Verify import of OpenSSH public key""" + key = self.rsa.importKey(self.rsaPublicKeyOpenSSH) + self.assertEqual(key.n, self.n) + self.assertEqual(key.e, self.e) + + def testImportKey8(self): + """Verify import of encrypted PrivateKeyInfo DER SEQUENCE""" + for t in self.rsaKeyEncryptedPEM: + key = self.rsa.importKey(t[1], t[0]) + self.failUnless(key.has_private()) + self.assertEqual(key.n, self.n) + self.assertEqual(key.e, self.e) + self.assertEqual(key.d, self.d) + self.assertEqual(key.p, self.p) + self.assertEqual(key.q, self.q) + + def testImportKey9(self): + """Verify import of unencrypted PrivateKeyInfo DER SEQUENCE""" + key = self.rsa.importKey(self.rsaKeyDER8) + self.failUnless(key.has_private()) + self.assertEqual(key.n, self.n) + self.assertEqual(key.e, self.e) + self.assertEqual(key.d, self.d) + self.assertEqual(key.p, self.p) + self.assertEqual(key.q, self.q) + + def testImportKey10(self): + """Verify import of unencrypted PrivateKeyInfo DER SEQUENCE, encoded with PEM""" + key = self.rsa.importKey(self.rsaKeyPEM8) + self.failUnless(key.has_private()) + self.assertEqual(key.n, self.n) + self.assertEqual(key.e, self.e) + self.assertEqual(key.d, self.d) + self.assertEqual(key.p, self.p) + self.assertEqual(key.q, self.q) + + def testImportKey11(self): + """Verify import of RSAPublicKey DER SEQUENCE""" + der = asn1.DerSequence([17, 3]).encode() + key = self.rsa.importKey(der) + self.assertEqual(key.n, 17) + self.assertEqual(key.e, 3) + + def testImportKey12(self): + """Verify import of RSAPublicKey DER SEQUENCE, encoded with PEM""" + der = asn1.DerSequence([17, 3]).encode() + pem = der2pem(der) + key = self.rsa.importKey(pem) + self.assertEqual(key.n, 17) + self.assertEqual(key.e, 3) + + ### + def testExportKey1(self): + key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv]) + derKey = key.exportKey("DER") + self.assertEqual(derKey, self.rsaKeyDER) + + def testExportKey2(self): + key = self.rsa.construct([self.n, self.e]) + derKey = key.exportKey("DER") + self.assertEqual(derKey, self.rsaPublicKeyDER) + + def testExportKey3(self): + key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv]) + pemKey = key.exportKey("PEM") + self.assertEqual(pemKey, b(self.rsaKeyPEM)) + + def testExportKey4(self): + key = self.rsa.construct([self.n, self.e]) + pemKey = key.exportKey("PEM") + self.assertEqual(pemKey, b(self.rsaPublicKeyPEM)) + + def testExportKey5(self): + key = self.rsa.construct([self.n, self.e]) + openssh_1 = key.exportKey("OpenSSH").split() + openssh_2 = self.rsaPublicKeyOpenSSH.split() + self.assertEqual(openssh_1[0], openssh_2[0]) + self.assertEqual(openssh_1[1], openssh_2[1]) + + def testExportKey4(self): + key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv]) + # Tuple with index #1 is encrypted with 3DES + t = map(b,self.rsaKeyEncryptedPEM[1]) + # Force the salt being used when exporting + key._randfunc = lambda N: (t[2]*divmod(N+len(t[2]),len(t[2]))[0])[:N] + pemKey = key.exportKey("PEM", t[0]) + self.assertEqual(pemKey, t[1]) + + def testExportKey5(self): + key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv]) + derKey = key.exportKey("DER", pkcs=8) + self.assertEqual(derKey, self.rsaKeyDER8) + + def testExportKey6(self): + key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv]) + pemKey = key.exportKey("PEM", pkcs=8) + self.assertEqual(pemKey, b(self.rsaKeyPEM8)) + +class ImportKeyTestsSlow(ImportKeyTests): + def setUp(self): + self.rsa = RSA.RSAImplementation(use_fast_math=0) + +class ImportKeyTestsFast(ImportKeyTests): + def setUp(self): + self.rsa = RSA.RSAImplementation(use_fast_math=1) + +if __name__ == '__main__': + unittest.main() + +def get_tests(config={}): + tests = [] + try: + from Crypto.PublicKey import _fastmath + tests += list_test_cases(ImportKeyTestsFast) + except ImportError: + pass + tests += list_test_cases(ImportKeyTestsSlow) + return tests + +if __name__ == '__main__': + suite = lambda: unittest.TestSuite(get_tests()) + unittest.main(defaultTest='suite') + +# vim:set ts=4 sw=4 sts=4 expandtab: |