summaryrefslogtreecommitdiffstats
path: root/lib/Python/Lib/Crypto/PublicKey
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Python/Lib/Crypto/PublicKey')
-rw-r--r--lib/Python/Lib/Crypto/PublicKey/DSA.py379
-rw-r--r--lib/Python/Lib/Crypto/PublicKey/ElGamal.py373
-rw-r--r--lib/Python/Lib/Crypto/PublicKey/RSA.py719
-rw-r--r--lib/Python/Lib/Crypto/PublicKey/_DSA.py115
-rw-r--r--lib/Python/Lib/Crypto/PublicKey/_RSA.py81
-rw-r--r--lib/Python/Lib/Crypto/PublicKey/__init__.py41
-rw-r--r--lib/Python/Lib/Crypto/PublicKey/_slowmath.py187
-rw-r--r--lib/Python/Lib/Crypto/PublicKey/pubkey.py240
8 files changed, 2135 insertions, 0 deletions
diff --git a/lib/Python/Lib/Crypto/PublicKey/DSA.py b/lib/Python/Lib/Crypto/PublicKey/DSA.py
new file mode 100644
index 000000000..d6bffd673
--- /dev/null
+++ b/lib/Python/Lib/Crypto/PublicKey/DSA.py
@@ -0,0 +1,379 @@
+# -*- coding: utf-8 -*-
+#
+# PublicKey/DSA.py : DSA signature primitive
+#
+# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""DSA public-key signature algorithm.
+
+DSA_ is a widespread public-key signature algorithm. Its security is
+based on the discrete logarithm problem (DLP_). Given a cyclic
+group, a generator *g*, and an element *h*, it is hard
+to find an integer *x* such that *g^x = h*. The problem is believed
+to be difficult, and it has been proved such (and therefore secure) for
+more than 30 years.
+
+The group is actually a sub-group over the integers modulo *p*, with *p* prime.
+The sub-group order is *q*, which is prime too; it always holds that *(p-1)* is a multiple of *q*.
+The cryptographic strength is linked to the magnitude of *p* and *q*.
+The signer holds a value *x* (*0<x<q-1*) as private key, and its public
+key (*y* where *y=g^x mod p*) is distributed.
+
+In 2012, a sufficient size is deemed to be 2048 bits for *p* and 256 bits for *q*.
+For more information, see the most recent ECRYPT_ report.
+
+DSA is reasonably secure for new designs.
+
+The algorithm can only be used for authentication (digital signature).
+DSA cannot be used for confidentiality (encryption).
+
+The values *(p,q,g)* are called *domain parameters*;
+they are not sensitive but must be shared by both parties (the signer and the verifier).
+Different signers can share the same domain parameters with no security
+concerns.
+
+The DSA signature is twice as big as the size of *q* (64 bytes if *q* is 256 bit
+long).
+
+This module provides facilities for generating new DSA keys and for constructing
+them from known components. DSA keys allows you to perform basic signing and
+verification.
+
+ >>> from Crypto.Random import random
+ >>> from Crypto.PublicKey import DSA
+ >>> from Crypto.Hash import SHA
+ >>>
+ >>> message = "Hello"
+ >>> key = DSA.generate(1024)
+ >>> h = SHA.new(message).digest()
+ >>> k = random.StrongRandom().randint(1,key.q-1)
+ >>> sig = key.sign(h,k)
+ >>> ...
+ >>> if key.verify(h,sig):
+ >>> print "OK"
+ >>> else:
+ >>> print "Incorrect signature"
+
+.. _DSA: http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
+.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
+.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
+"""
+
+__revision__ = "$Id$"
+
+__all__ = ['generate', 'construct', 'error', 'DSAImplementation', '_DSAobj']
+
+import sys
+if sys.version_info[0] == 2 and sys.version_info[1] == 1:
+ from Crypto.Util.py21compat import *
+
+from Crypto.PublicKey import _DSA, _slowmath, pubkey
+from Crypto import Random
+
+try:
+ from Crypto.PublicKey import _fastmath
+except ImportError:
+ _fastmath = None
+
+class _DSAobj(pubkey.pubkey):
+ """Class defining an actual DSA key.
+
+ :undocumented: __getstate__, __setstate__, __repr__, __getattr__
+ """
+ #: Dictionary of DSA parameters.
+ #:
+ #: A public key will only have the following entries:
+ #:
+ #: - **y**, the public key.
+ #: - **g**, the generator.
+ #: - **p**, the modulus.
+ #: - **q**, the order of the sub-group.
+ #:
+ #: A private key will also have:
+ #:
+ #: - **x**, the private key.
+ keydata = ['y', 'g', 'p', 'q', 'x']
+
+ def __init__(self, implementation, key):
+ self.implementation = implementation
+ self.key = key
+
+ def __getattr__(self, attrname):
+ if attrname in self.keydata:
+ # For backward compatibility, allow the user to get (not set) the
+ # DSA key parameters directly from this object.
+ return getattr(self.key, attrname)
+ else:
+ raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
+
+ def sign(self, M, K):
+ """Sign a piece of data with DSA.
+
+ :Parameter M: The piece of data to sign with DSA. It may
+ not be longer in bit size than the sub-group order (*q*).
+ :Type M: byte string or long
+
+ :Parameter K: A secret number, chosen randomly in the closed
+ range *[1,q-1]*.
+ :Type K: long (recommended) or byte string (not recommended)
+
+ :attention: selection of *K* is crucial for security. Generating a
+ random number larger than *q* and taking the modulus by *q* is
+ **not** secure, since smaller values will occur more frequently.
+ Generating a random number systematically smaller than *q-1*
+ (e.g. *floor((q-1)/8)* random bytes) is also **not** secure. In general,
+ it shall not be possible for an attacker to know the value of `any
+ bit of K`__.
+
+ :attention: The number *K* shall not be reused for any other
+ operation and shall be discarded immediately.
+
+ :attention: M must be a digest cryptographic hash, otherwise
+ an attacker may mount an existential forgery attack.
+
+ :Return: A tuple with 2 longs.
+
+ .. __: http://www.di.ens.fr/~pnguyen/pub_NgSh00.htm
+ """
+ return pubkey.pubkey.sign(self, M, K)
+
+ def verify(self, M, signature):
+ """Verify the validity of a DSA signature.
+
+ :Parameter M: The expected message.
+ :Type M: byte string or long
+
+ :Parameter signature: The DSA signature to verify.
+ :Type signature: A tuple with 2 longs as return by `sign`
+
+ :Return: True if the signature is correct, False otherwise.
+ """
+ return pubkey.pubkey.verify(self, M, signature)
+
+ def _encrypt(self, c, K):
+ raise TypeError("DSA cannot encrypt")
+
+ def _decrypt(self, c):
+ raise TypeError("DSA cannot decrypt")
+
+ def _blind(self, m, r):
+ raise TypeError("DSA cannot blind")
+
+ def _unblind(self, m, r):
+ raise TypeError("DSA cannot unblind")
+
+ def _sign(self, m, k):
+ return self.key._sign(m, k)
+
+ def _verify(self, m, sig):
+ (r, s) = sig
+ return self.key._verify(m, r, s)
+
+ def has_private(self):
+ return self.key.has_private()
+
+ def size(self):
+ return self.key.size()
+
+ def can_blind(self):
+ return False
+
+ def can_encrypt(self):
+ return False
+
+ def can_sign(self):
+ return True
+
+ def publickey(self):
+ return self.implementation.construct((self.key.y, self.key.g, self.key.p, self.key.q))
+
+ def __getstate__(self):
+ d = {}
+ for k in self.keydata:
+ try:
+ d[k] = getattr(self.key, k)
+ except AttributeError:
+ pass
+ return d
+
+ def __setstate__(self, d):
+ if not hasattr(self, 'implementation'):
+ self.implementation = DSAImplementation()
+ t = []
+ for k in self.keydata:
+ if not d.has_key(k):
+ break
+ t.append(d[k])
+ self.key = self.implementation._math.dsa_construct(*tuple(t))
+
+ def __repr__(self):
+ attrs = []
+ for k in self.keydata:
+ if k == 'p':
+ attrs.append("p(%d)" % (self.size()+1,))
+ elif hasattr(self.key, k):
+ attrs.append(k)
+ if self.has_private():
+ attrs.append("private")
+ # PY3K: This is meant to be text, do not change to bytes (data)
+ return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
+
+class DSAImplementation(object):
+ """
+ A DSA key factory.
+
+ This class is only internally used to implement the methods of the
+ `Crypto.PublicKey.DSA` module.
+ """
+
+ def __init__(self, **kwargs):
+ """Create a new DSA key factory.
+
+ :Keywords:
+ use_fast_math : bool
+ Specify which mathematic library to use:
+
+ - *None* (default). Use fastest math available.
+ - *True* . Use fast math.
+ - *False* . Use slow math.
+ default_randfunc : callable
+ Specify how to collect random data:
+
+ - *None* (default). Use Random.new().read().
+ - not *None* . Use the specified function directly.
+ :Raise RuntimeError:
+ When **use_fast_math** =True but fast math is not available.
+ """
+ use_fast_math = kwargs.get('use_fast_math', None)
+ if use_fast_math is None: # Automatic
+ if _fastmath is not None:
+ self._math = _fastmath
+ else:
+ self._math = _slowmath
+
+ elif use_fast_math: # Explicitly select fast math
+ if _fastmath is not None:
+ self._math = _fastmath
+ else:
+ raise RuntimeError("fast math module not available")
+
+ else: # Explicitly select slow math
+ self._math = _slowmath
+
+ self.error = self._math.error
+
+ # 'default_randfunc' parameter:
+ # None (default) - use Random.new().read
+ # not None - use the specified function
+ self._default_randfunc = kwargs.get('default_randfunc', None)
+ self._current_randfunc = None
+
+ def _get_randfunc(self, randfunc):
+ if randfunc is not None:
+ return randfunc
+ elif self._current_randfunc is None:
+ self._current_randfunc = Random.new().read
+ return self._current_randfunc
+
+ def generate(self, bits, randfunc=None, progress_func=None):
+ """Randomly generate a fresh, new DSA key.
+
+ :Parameters:
+ bits : int
+ Key length, or size (in bits) of the DSA modulus
+ *p*.
+ It must be a multiple of 64, in the closed
+ interval [512,1024].
+ randfunc : callable
+ Random number generation function; it should accept
+ a single integer N and return a string of random data
+ N bytes long.
+ If not specified, a new one will be instantiated
+ from ``Crypto.Random``.
+ progress_func : callable
+ Optional function that will be called with a short string
+ containing the key parameter currently being generated;
+ it's useful for interactive applications where a user is
+ waiting for a key to be generated.
+
+ :attention: You should always use a cryptographically secure random number generator,
+ such as the one defined in the ``Crypto.Random`` module; **don't** just use the
+ current time and the ``random`` module.
+
+ :Return: A DSA key object (`_DSAobj`).
+
+ :Raise ValueError:
+ When **bits** is too little, too big, or not a multiple of 64.
+ """
+
+ # Check against FIPS 186-2, which says that the size of the prime p
+ # must be a multiple of 64 bits between 512 and 1024
+ for i in (0, 1, 2, 3, 4, 5, 6, 7, 8):
+ if bits == 512 + 64*i:
+ return self._generate(bits, randfunc, progress_func)
+
+ # The March 2006 draft of FIPS 186-3 also allows 2048 and 3072-bit
+ # primes, but only with longer q values. Since the current DSA
+ # implementation only supports a 160-bit q, we don't support larger
+ # values.
+ raise ValueError("Number of bits in p must be a multiple of 64 between 512 and 1024, not %d bits" % (bits,))
+
+ def _generate(self, bits, randfunc=None, progress_func=None):
+ rf = self._get_randfunc(randfunc)
+ obj = _DSA.generate_py(bits, rf, progress_func) # TODO: Don't use legacy _DSA module
+ key = self._math.dsa_construct(obj.y, obj.g, obj.p, obj.q, obj.x)
+ return _DSAobj(self, key)
+
+ def construct(self, tup):
+ """Construct a DSA key from a tuple of valid DSA components.
+
+ The modulus *p* must be a prime.
+
+ The following equations must apply:
+
+ - p-1 = 0 mod q
+ - g^x = y mod p
+ - 0 < x < q
+ - 1 < g < p
+
+ :Parameters:
+ tup : tuple
+ A tuple of long integers, with 4 or 5 items
+ in the following order:
+
+ 1. Public key (*y*).
+ 2. Sub-group generator (*g*).
+ 3. Modulus, finite field order (*p*).
+ 4. Sub-group order (*q*).
+ 5. Private key (*x*). Optional.
+
+ :Return: A DSA key object (`_DSAobj`).
+ """
+ key = self._math.dsa_construct(*tup)
+ return _DSAobj(self, key)
+
+_impl = DSAImplementation()
+generate = _impl.generate
+construct = _impl.construct
+error = _impl.error
+
+# vim:set ts=4 sw=4 sts=4 expandtab:
+
diff --git a/lib/Python/Lib/Crypto/PublicKey/ElGamal.py b/lib/Python/Lib/Crypto/PublicKey/ElGamal.py
new file mode 100644
index 000000000..99af71c44
--- /dev/null
+++ b/lib/Python/Lib/Crypto/PublicKey/ElGamal.py
@@ -0,0 +1,373 @@
+#
+# ElGamal.py : ElGamal encryption/decryption and signatures
+#
+# Part of the Python Cryptography Toolkit
+#
+# Originally written by: A.M. Kuchling
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""ElGamal public-key algorithm (randomized encryption and signature).
+
+Signature algorithm
+-------------------
+The security of the ElGamal signature scheme is based (like DSA) on the discrete
+logarithm problem (DLP_). Given a cyclic group, a generator *g*,
+and an element *h*, it is hard to find an integer *x* such that *g^x = h*.
+
+The group is the largest multiplicative sub-group of the integers modulo *p*,
+with *p* prime.
+The signer holds a value *x* (*0<x<p-1*) as private key, and its public
+key (*y* where *y=g^x mod p*) is distributed.
+
+The ElGamal signature is twice as big as *p*.
+
+Encryption algorithm
+--------------------
+The security of the ElGamal encryption scheme is based on the computational
+Diffie-Hellman problem (CDH_). Given a cyclic group, a generator *g*,
+and two integers *a* and *b*, it is difficult to find
+the element *g^{ab}* when only *g^a* and *g^b* are known, and not *a* and *b*.
+
+As before, the group is the largest multiplicative sub-group of the integers
+modulo *p*, with *p* prime.
+The receiver holds a value *a* (*0<a<p-1*) as private key, and its public key
+(*b* where *b*=g^a*) is given to the sender.
+
+The ElGamal ciphertext is twice as big as *p*.
+
+Domain parameters
+-----------------
+For both signature and encryption schemes, the values *(p,g)* are called
+*domain parameters*.
+They are not sensitive but must be distributed to all parties (senders and
+receivers).
+Different signers can share the same domain parameters, as can
+different recipients of encrypted messages.
+
+Security
+--------
+Both DLP and CDH problem are believed to be difficult, and they have been proved
+such (and therefore secure) for more than 30 years.
+
+The cryptographic strength is linked to the magnitude of *p*.
+In 2012, a sufficient size for *p* is deemed to be 2048 bits.
+For more information, see the most recent ECRYPT_ report.
+
+Even though ElGamal algorithms are in theory reasonably secure for new designs,
+in practice there are no real good reasons for using them.
+The signature is four times larger than the equivalent DSA, and the ciphertext
+is two times larger than the equivalent RSA.
+
+Functionality
+-------------
+This module provides facilities for generating new ElGamal keys and for constructing
+them from known components. ElGamal keys allows you to perform basic signing,
+verification, encryption, and decryption.
+
+ >>> from Crypto import Random
+ >>> from Crypto.Random import random
+ >>> from Crypto.PublicKey import ElGamal
+ >>> from Crypto.Util.number import GCD
+ >>> from Crypto.Hash import SHA
+ >>>
+ >>> message = "Hello"
+ >>> key = ElGamal.generate(1024, Random.new().read)
+ >>> h = SHA.new(message).digest()
+ >>> while 1:
+ >>> k = random.StrongRandom().randint(1,key.p-1)
+ >>> if GCD(k,key.p-1)==1: break
+ >>> sig = key.sign(h,k)
+ >>> ...
+ >>> if key.verify(h,sig):
+ >>> print "OK"
+ >>> else:
+ >>> print "Incorrect signature"
+
+.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
+.. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption
+.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
+"""
+
+__revision__ = "$Id$"
+
+__all__ = ['generate', 'construct', 'error', 'ElGamalobj']
+
+from Crypto.PublicKey.pubkey import *
+from Crypto.Util import number
+
+class error (Exception):
+ pass
+
+# Generate an ElGamal key with N bits
+def generate(bits, randfunc, progress_func=None):
+ """Randomly generate a fresh, new ElGamal key.
+
+ The key will be safe for use for both encryption and signature
+ (although it should be used for **only one** purpose).
+
+ :Parameters:
+ bits : int
+ Key length, or size (in bits) of the modulus *p*.
+ Recommended value is 2048.
+ randfunc : callable
+ Random number generation function; it should accept
+ a single integer N and return a string of random data
+ N bytes long.
+ progress_func : callable
+ Optional function that will be called with a short string
+ containing the key parameter currently being generated;
+ it's useful for interactive applications where a user is
+ waiting for a key to be generated.
+
+ :attention: You should always use a cryptographically secure random number generator,
+ such as the one defined in the ``Crypto.Random`` module; **don't** just use the
+ current time and the ``random`` module.
+
+ :Return: An ElGamal key object (`ElGamalobj`).
+ """
+ obj=ElGamalobj()
+ # Generate a safe prime p
+ # See Algorithm 4.86 in Handbook of Applied Cryptography
+ if progress_func:
+ progress_func('p\n')
+ while 1:
+ q = bignum(getPrime(bits-1, randfunc))
+ obj.p = 2*q+1
+ if number.isPrime(obj.p, randfunc=randfunc):
+ break
+ # Generate generator g
+ # See Algorithm 4.80 in Handbook of Applied Cryptography
+ # Note that the order of the group is n=p-1=2q, where q is prime
+ if progress_func:
+ progress_func('g\n')
+ while 1:
+ # We must avoid g=2 because of Bleichenbacher's attack described
+ # in "Generating ElGamal signatures without knowning the secret key",
+ # 1996
+ #
+ obj.g = number.getRandomRange(3, obj.p, randfunc)
+ safe = 1
+ if pow(obj.g, 2, obj.p)==1:
+ safe=0
+ if safe and pow(obj.g, q, obj.p)==1:
+ safe=0
+ # Discard g if it divides p-1 because of the attack described
+ # in Note 11.67 (iii) in HAC
+ if safe and divmod(obj.p-1, obj.g)[1]==0:
+ safe=0
+ # g^{-1} must not divide p-1 because of Khadir's attack
+ # described in "Conditions of the generator for forging ElGamal
+ # signature", 2011
+ ginv = number.inverse(obj.g, obj.p)
+ if safe and divmod(obj.p-1, ginv)[1]==0:
+ safe=0
+ if safe:
+ break
+ # Generate private key x
+ if progress_func:
+ progress_func('x\n')
+ obj.x=number.getRandomRange(2, obj.p-1, randfunc)
+ # Generate public key y
+ if progress_func:
+ progress_func('y\n')
+ obj.y = pow(obj.g, obj.x, obj.p)
+ return obj
+
+def construct(tup):
+ """Construct an ElGamal key from a tuple of valid ElGamal components.
+
+ The modulus *p* must be a prime.
+
+ The following conditions must apply:
+
+ - 1 < g < p-1
+ - g^{p-1} = 1 mod p
+ - 1 < x < p-1
+ - g^x = y mod p
+
+ :Parameters:
+ tup : tuple
+ A tuple of long integers, with 3 or 4 items
+ in the following order:
+
+ 1. Modulus (*p*).
+ 2. Generator (*g*).
+ 3. Public key (*y*).
+ 4. Private key (*x*). Optional.
+
+ :Return: An ElGamal key object (`ElGamalobj`).
+ """
+
+ obj=ElGamalobj()
+ if len(tup) not in [3,4]:
+ raise ValueError('argument for construct() wrong length')
+ for i in range(len(tup)):
+ field = obj.keydata[i]
+ setattr(obj, field, tup[i])
+ return obj
+
+class ElGamalobj(pubkey):
+ """Class defining an ElGamal key.
+
+ :undocumented: __getstate__, __setstate__, __repr__, __getattr__
+ """
+
+ #: Dictionary of ElGamal parameters.
+ #:
+ #: A public key will only have the following entries:
+ #:
+ #: - **y**, the public key.
+ #: - **g**, the generator.
+ #: - **p**, the modulus.
+ #:
+ #: A private key will also have:
+ #:
+ #: - **x**, the private key.
+ keydata=['p', 'g', 'y', 'x']
+
+ def encrypt(self, plaintext, K):
+ """Encrypt a piece of data with ElGamal.
+
+ :Parameter plaintext: The piece of data to encrypt with ElGamal.
+ It must be numerically smaller than the module (*p*).
+ :Type plaintext: byte string or long
+
+ :Parameter K: A secret number, chosen randomly in the closed
+ range *[1,p-2]*.
+ :Type K: long (recommended) or byte string (not recommended)
+
+ :Return: A tuple with two items. Each item is of the same type as the
+ plaintext (string or long).
+
+ :attention: selection of *K* is crucial for security. Generating a
+ random number larger than *p-1* and taking the modulus by *p-1* is
+ **not** secure, since smaller values will occur more frequently.
+ Generating a random number systematically smaller than *p-1*
+ (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
+ In general, it shall not be possible for an attacker to know
+ the value of any bit of K.
+
+ :attention: The number *K* shall not be reused for any other
+ operation and shall be discarded immediately.
+ """
+ return pubkey.encrypt(self, plaintext, K)
+
+ def decrypt(self, ciphertext):
+ """Decrypt a piece of data with ElGamal.
+
+ :Parameter ciphertext: The piece of data to decrypt with ElGamal.
+ :Type ciphertext: byte string, long or a 2-item tuple as returned
+ by `encrypt`
+
+ :Return: A byte string if ciphertext was a byte string or a tuple
+ of byte strings. A long otherwise.
+ """
+ return pubkey.decrypt(self, ciphertext)
+
+ def sign(self, M, K):
+ """Sign a piece of data with ElGamal.
+
+ :Parameter M: The piece of data to sign with ElGamal. It may
+ not be longer in bit size than *p-1*.
+ :Type M: byte string or long
+
+ :Parameter K: A secret number, chosen randomly in the closed
+ range *[1,p-2]* and such that *gcd(k,p-1)=1*.
+ :Type K: long (recommended) or byte string (not recommended)
+
+ :attention: selection of *K* is crucial for security. Generating a
+ random number larger than *p-1* and taking the modulus by *p-1* is
+ **not** secure, since smaller values will occur more frequently.
+ Generating a random number systematically smaller than *p-1*
+ (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
+ In general, it shall not be possible for an attacker to know
+ the value of any bit of K.
+
+ :attention: The number *K* shall not be reused for any other
+ operation and shall be discarded immediately.
+
+ :attention: M must be be a cryptographic hash, otherwise an
+ attacker may mount an existential forgery attack.
+
+ :Return: A tuple with 2 longs.
+ """
+ return pubkey.sign(self, M, K)
+
+ def verify(self, M, signature):
+ """Verify the validity of an ElGamal signature.
+
+ :Parameter M: The expected message.
+ :Type M: byte string or long
+
+ :Parameter signature: The ElGamal signature to verify.
+ :Type signature: A tuple with 2 longs as return by `sign`
+
+ :Return: True if the signature is correct, False otherwise.
+ """
+ return pubkey.verify(self, M, signature)
+
+ def _encrypt(self, M, K):
+ a=pow(self.g, K, self.p)
+ b=( M*pow(self.y, K, self.p) ) % self.p
+ return ( a,b )
+
+ def _decrypt(self, M):
+ if (not hasattr(self, 'x')):
+ raise TypeError('Private key not available in this object')
+ ax=pow(M[0], self.x, self.p)
+ plaintext=(M[1] * inverse(ax, self.p ) ) % self.p
+ return plaintext
+
+ def _sign(self, M, K):
+ if (not hasattr(self, 'x')):
+ raise TypeError('Private key not available in this object')
+ p1=self.p-1
+ if (GCD(K, p1)!=1):
+ raise ValueError('Bad K value: GCD(K,p-1)!=1')
+ a=pow(self.g, K, self.p)
+ t=(M-self.x*a) % p1
+ while t<0: t=t+p1
+ b=(t*inverse(K, p1)) % p1
+ return (a, b)
+
+ def _verify(self, M, sig):
+ if sig[0]<1 or sig[0]>self.p-1:
+ return 0
+ v1=pow(self.y, sig[0], self.p)
+ v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
+ v2=pow(self.g, M, self.p)
+ if v1==v2:
+ return 1
+ return 0
+
+ def size(self):
+ return number.size(self.p) - 1
+
+ def has_private(self):
+ if hasattr(self, 'x'):
+ return 1
+ else:
+ return 0
+
+ def publickey(self):
+ return construct((self.p, self.g, self.y))
+
+
+object=ElGamalobj
diff --git a/lib/Python/Lib/Crypto/PublicKey/RSA.py b/lib/Python/Lib/Crypto/PublicKey/RSA.py
new file mode 100644
index 000000000..99d851ddb
--- /dev/null
+++ b/lib/Python/Lib/Crypto/PublicKey/RSA.py
@@ -0,0 +1,719 @@
+# -*- coding: utf-8 -*-
+#
+# PublicKey/RSA.py : RSA public key primitive
+#
+# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""RSA public-key cryptography algorithm (signature and encryption).
+
+RSA_ is the most widespread and used public key algorithm. Its security is
+based on the difficulty of factoring large integers. The algorithm has
+withstood attacks for 30 years, and it is therefore considered reasonably
+secure for new designs.
+
+The algorithm can be used for both confidentiality (encryption) and
+authentication (digital signature). It is worth noting that signing and
+decryption are significantly slower than verification and encryption.
+The cryptograhic strength is primarily linked to the length of the modulus *n*.
+In 2012, a sufficient length is deemed to be 2048 bits. For more information,
+see the most recent ECRYPT_ report.
+
+Both RSA ciphertext and RSA signature are as big as the modulus *n* (256
+bytes if *n* is 2048 bit long).
+
+This module provides facilities for generating fresh, new RSA keys, constructing
+them from known components, exporting them, and importing them.
+
+ >>> from Crypto.PublicKey import RSA
+ >>>
+ >>> key = RSA.generate(2048)
+ >>> f = open('mykey.pem','w')
+ >>> f.write(RSA.exportKey('PEM'))
+ >>> f.close()
+ ...
+ >>> f = open('mykey.pem','r')
+ >>> key = RSA.importKey(f.read())
+
+Even though you may choose to directly use the methods of an RSA key object
+to perform the primitive cryptographic operations (e.g. `_RSAobj.encrypt`),
+it is recommended to use one of the standardized schemes instead (like
+`Crypto.Cipher.PKCS1_v1_5` or `Crypto.Signature.PKCS1_v1_5`).
+
+.. _RSA: http://en.wikipedia.org/wiki/RSA_%28algorithm%29
+.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
+
+:sort: generate,construct,importKey,error
+"""
+
+__revision__ = "$Id$"
+
+__all__ = ['generate', 'construct', 'error', 'importKey', 'RSAImplementation', '_RSAobj']
+
+import sys
+if sys.version_info[0] == 2 and sys.version_info[1] == 1:
+ from Crypto.Util.py21compat import *
+from Crypto.Util.py3compat import *
+#from Crypto.Util.python_compat import *
+from Crypto.Util.number import getRandomRange, bytes_to_long, long_to_bytes
+
+from Crypto.PublicKey import _RSA, _slowmath, pubkey
+from Crypto import Random
+
+from Crypto.Util.asn1 import DerObject, DerSequence, DerNull
+import binascii
+import struct
+
+from Crypto.Util.number import inverse
+
+from Crypto.Util.number import inverse
+
+try:
+ from Crypto.PublicKey import _fastmath
+except ImportError:
+ _fastmath = None
+
+class _RSAobj(pubkey.pubkey):
+ """Class defining an actual RSA key.
+
+ :undocumented: __getstate__, __setstate__, __repr__, __getattr__
+ """
+ #: Dictionary of RSA parameters.
+ #:
+ #: A public key will only have the following entries:
+ #:
+ #: - **n**, the modulus.
+ #: - **e**, the public exponent.
+ #:
+ #: A private key will also have:
+ #:
+ #: - **d**, the private exponent.
+ #: - **p**, the first factor of n.
+ #: - **q**, the second factor of n.
+ #: - **u**, the CRT coefficient (1/p) mod q.
+ keydata = ['n', 'e', 'd', 'p', 'q', 'u']
+
+ def __init__(self, implementation, key, randfunc=None):
+ self.implementation = implementation
+ self.key = key
+ if randfunc is None:
+ randfunc = Random.new().read
+ self._randfunc = randfunc
+
+ def __getattr__(self, attrname):
+ if attrname in self.keydata:
+ # For backward compatibility, allow the user to get (not set) the
+ # RSA key parameters directly from this object.
+ return getattr(self.key, attrname)
+ else:
+ raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
+
+ def encrypt(self, plaintext, K):
+ """Encrypt a piece of data with RSA.
+
+ :Parameter plaintext: The piece of data to encrypt with RSA. It may not
+ be numerically larger than the RSA module (**n**).
+ :Type plaintext: byte string or long
+
+ :Parameter K: A random parameter (*for compatibility only. This
+ value will be ignored*)
+ :Type K: byte string or long
+
+ :attention: this function performs the plain, primitive RSA encryption
+ (*textbook*). In real applications, you always need to use proper
+ cryptographic padding, and you should not directly encrypt data with
+ this method. Failure to do so may lead to security vulnerabilities.
+ It is recommended to use modules
+ `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
+
+ :Return: A tuple with two items. The first item is the ciphertext
+ of the same type as the plaintext (string or long). The second item
+ is always None.
+ """
+ return pubkey.pubkey.encrypt(self, plaintext, K)
+
+ def decrypt(self, ciphertext):
+ """Decrypt a piece of data with RSA.
+
+ Decryption always takes place with blinding.
+
+ :attention: this function performs the plain, primitive RSA decryption
+ (*textbook*). In real applications, you always need to use proper
+ cryptographic padding, and you should not directly decrypt data with
+ this method. Failure to do so may lead to security vulnerabilities.
+ It is recommended to use modules
+ `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
+
+ :Parameter ciphertext: The piece of data to decrypt with RSA. It may
+ not be numerically larger than the RSA module (**n**). If a tuple,
+ the first item is the actual ciphertext; the second item is ignored.
+
+ :Type ciphertext: byte string, long or a 2-item tuple as returned by
+ `encrypt`
+
+ :Return: A byte string if ciphertext was a byte string or a tuple
+ of byte strings. A long otherwise.
+ """
+ return pubkey.pubkey.decrypt(self, ciphertext)
+
+ def sign(self, M, K):
+ """Sign a piece of data with RSA.
+
+ Signing always takes place with blinding.
+
+ :attention: this function performs the plain, primitive RSA decryption
+ (*textbook*). In real applications, you always need to use proper
+ cryptographic padding, and you should not directly sign data with
+ this method. Failure to do so may lead to security vulnerabilities.
+ It is recommended to use modules
+ `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
+
+ :Parameter M: The piece of data to sign with RSA. It may
+ not be numerically larger than the RSA module (**n**).
+ :Type M: byte string or long
+
+ :Parameter K: A random parameter (*for compatibility only. This
+ value will be ignored*)
+ :Type K: byte string or long
+
+ :Return: A 2-item tuple. The first item is the actual signature (a
+ long). The second item is always None.
+ """
+ return pubkey.pubkey.sign(self, M, K)
+
+ def verify(self, M, signature):
+ """Verify the validity of an RSA signature.
+
+ :attention: this function performs the plain, primitive RSA encryption
+ (*textbook*). In real applications, you always need to use proper
+ cryptographic padding, and you should not directly verify data with
+ this method. Failure to do so may lead to security vulnerabilities.
+ It is recommended to use modules
+ `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
+
+ :Parameter M: The expected message.
+ :Type M: byte string or long
+
+ :Parameter signature: The RSA signature to verify. The first item of
+ the tuple is the actual signature (a long not larger than the modulus
+ **n**), whereas the second item is always ignored.
+ :Type signature: A 2-item tuple as return by `sign`
+
+ :Return: True if the signature is correct, False otherwise.
+ """
+ return pubkey.pubkey.verify(self, M, signature)
+
+ def _encrypt(self, c, K):
+ return (self.key._encrypt(c),)
+
+ def _decrypt(self, c):
+ #(ciphertext,) = c
+ (ciphertext,) = c[:1] # HACK - We should use the previous line
+ # instead, but this is more compatible and we're
+ # going to replace the Crypto.PublicKey API soon
+ # anyway.
+
+ # Blinded RSA decryption (to prevent timing attacks):
+ # Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
+ r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
+ # Step 2: Compute c' = c * r**e mod n
+ cp = self.key._blind(ciphertext, r)
+ # Step 3: Compute m' = c'**d mod n (ordinary RSA decryption)
+ mp = self.key._decrypt(cp)
+ # Step 4: Compute m = m**(r-1) mod n
+ return self.key._unblind(mp, r)
+
+ def _blind(self, m, r):
+ return self.key._blind(m, r)
+
+ def _unblind(self, m, r):
+ return self.key._unblind(m, r)
+
+ def _sign(self, m, K=None):
+ return (self.key._sign(m),)
+
+ def _verify(self, m, sig):
+ #(s,) = sig
+ (s,) = sig[:1] # HACK - We should use the previous line instead, but
+ # this is more compatible and we're going to replace
+ # the Crypto.PublicKey API soon anyway.
+ return self.key._verify(m, s)
+
+ def has_private(self):
+ return self.key.has_private()
+
+ def size(self):
+ return self.key.size()
+
+ def can_blind(self):
+ return True
+
+ def can_encrypt(self):
+ return True
+
+ def can_sign(self):
+ return True
+
+ def publickey(self):
+ return self.implementation.construct((self.key.n, self.key.e))
+
+ def __getstate__(self):
+ d = {}
+ for k in self.keydata:
+ try:
+ d[k] = getattr(self.key, k)
+ except AttributeError:
+ pass
+ return d
+
+ def __setstate__(self, d):
+ if not hasattr(self, 'implementation'):
+ self.implementation = RSAImplementation()
+ t = []
+ for k in self.keydata:
+ if not d.has_key(k):
+ break
+ t.append(d[k])
+ self.key = self.implementation._math.rsa_construct(*tuple(t))
+
+ def __repr__(self):
+ attrs = []
+ for k in self.keydata:
+ if k == 'n':
+ attrs.append("n(%d)" % (self.size()+1,))
+ elif hasattr(self.key, k):
+ attrs.append(k)
+ if self.has_private():
+ attrs.append("private")
+ # PY3K: This is meant to be text, do not change to bytes (data)
+ return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
+
+ def exportKey(self, format='PEM', passphrase=None, pkcs=1):
+ """Export this RSA key.
+
+ :Parameter format: The format to use for wrapping the key.
+
+ - *'DER'*. Binary encoding, always unencrypted.
+ - *'PEM'*. Textual encoding, done according to `RFC1421`_/`RFC1423`_.
+ Unencrypted (default) or encrypted.
+ - *'OpenSSH'*. Textual encoding, done according to OpenSSH specification.
+ Only suitable for public keys (not private keys).
+ :Type format: string
+
+ :Parameter passphrase: In case of PEM, the pass phrase to derive the encryption key from.
+ :Type passphrase: string
+
+ :Parameter pkcs: The PKCS standard to follow for assembling the key.
+ You have two choices:
+
+ - with **1**, the public key is embedded into an X.509 `SubjectPublicKeyInfo` DER SEQUENCE.
+ The private key is embedded into a `PKCS#1`_ `RSAPrivateKey` DER SEQUENCE.
+ This mode is the default.
+ - with **8**, the private key is embedded into a `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE.
+ This mode is not available for public keys.
+
+ PKCS standards are not relevant for the *OpenSSH* format.
+ :Type pkcs: integer
+
+ :Return: A byte string with the encoded public or private half.
+ :Raise ValueError:
+ When the format is unknown.
+
+ .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
+ .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
+ .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
+ .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
+ """
+ if passphrase is not None:
+ passphrase = tobytes(passphrase)
+ if format=='OpenSSH':
+ eb = long_to_bytes(self.e)
+ nb = long_to_bytes(self.n)
+ if bord(eb[0]) & 0x80: eb=bchr(0x00)+eb
+ if bord(nb[0]) & 0x80: nb=bchr(0x00)+nb
+ keyparts = [ 'ssh-rsa', eb, nb ]
+ keystring = ''.join([ struct.pack(">I",len(kp))+kp for kp in keyparts])
+ return 'ssh-rsa '+binascii.b2a_base64(keystring)[:-1]
+
+ # DER format is always used, even in case of PEM, which simply
+ # encodes it into BASE64.
+ der = DerSequence()
+ if self.has_private():
+ keyType= { 1: 'RSA PRIVATE', 8: 'PRIVATE' }[pkcs]
+ der[:] = [ 0, self.n, self.e, self.d, self.p, self.q,
+ self.d % (self.p-1), self.d % (self.q-1),
+ inverse(self.q, self.p) ]
+ if pkcs==8:
+ derkey = der.encode()
+ der = DerSequence([0])
+ der.append(algorithmIdentifier)
+ der.append(DerObject('OCTET STRING', derkey).encode())
+ else:
+ keyType = "PUBLIC"
+ der.append(algorithmIdentifier)
+ bitmap = DerObject('BIT STRING')
+ derPK = DerSequence( [ self.n, self.e ] )
+ bitmap.payload = bchr(0x00) + derPK.encode()
+ der.append(bitmap.encode())
+ if format=='DER':
+ return der.encode()
+ if format=='PEM':
+ pem = b("-----BEGIN " + keyType + " KEY-----\n")
+ objenc = None
+ if passphrase and keyType.endswith('PRIVATE'):
+ # We only support 3DES for encryption
+ import Crypto.Hash.MD5
+ from Crypto.Cipher import DES3
+ from Crypto.Protocol.KDF import PBKDF1
+ salt = self._randfunc(8)
+ key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
+ key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
+ objenc = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
+ pem += b('Proc-Type: 4,ENCRYPTED\n')
+ pem += b('DEK-Info: DES-EDE3-CBC,') + binascii.b2a_hex(salt).upper() + b('\n\n')
+
+ binaryKey = der.encode()
+ if objenc:
+ # Add PKCS#7-like padding
+ padding = objenc.block_size-len(binaryKey)%objenc.block_size
+ binaryKey = objenc.encrypt(binaryKey+bchr(padding)*padding)
+
+ # Each BASE64 line can take up to 64 characters (=48 bytes of data)
+ chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ]
+ pem += b('').join(chunks)
+ pem += b("-----END " + keyType + " KEY-----")
+ return pem
+ return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
+
+class RSAImplementation(object):
+ """
+ An RSA key factory.
+
+ This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` module.
+
+ :sort: __init__,generate,construct,importKey
+ :undocumented: _g*, _i*
+ """
+
+ def __init__(self, **kwargs):
+ """Create a new RSA key factory.
+
+ :Keywords:
+ use_fast_math : bool
+ Specify which mathematic library to use:
+
+ - *None* (default). Use fastest math available.
+ - *True* . Use fast math.
+ - *False* . Use slow math.
+ default_randfunc : callable
+ Specify how to collect random data:
+
+ - *None* (default). Use Random.new().read().
+ - not *None* . Use the specified function directly.
+ :Raise RuntimeError:
+ When **use_fast_math** =True but fast math is not available.
+ """
+ use_fast_math = kwargs.get('use_fast_math', None)
+ if use_fast_math is None: # Automatic
+ if _fastmath is not None:
+ self._math = _fastmath
+ else:
+ self._math = _slowmath
+
+ elif use_fast_math: # Explicitly select fast math
+ if _fastmath is not None:
+ self._math = _fastmath
+ else:
+ raise RuntimeError("fast math module not available")
+
+ else: # Explicitly select slow math
+ self._math = _slowmath
+
+ self.error = self._math.error
+
+ self._default_randfunc = kwargs.get('default_randfunc', None)
+ self._current_randfunc = None
+
+ def _get_randfunc(self, randfunc):
+ if randfunc is not None:
+ return randfunc
+ elif self._current_randfunc is None:
+ self._current_randfunc = Random.new().read
+ return self._current_randfunc
+
+ def generate(self, bits, randfunc=None, progress_func=None, e=65537):
+ """Randomly generate a fresh, new RSA key.
+
+ :Parameters:
+ bits : int
+ Key length, or size (in bits) of the RSA modulus.
+ It must be a multiple of 256, and no smaller than 1024.
+
+ randfunc : callable
+ Random number generation function; it should accept
+ a single integer N and return a string of random data
+ N bytes long.
+ If not specified, a new one will be instantiated
+ from ``Crypto.Random``.
+
+ progress_func : callable
+ Optional function that will be called with a short string
+ containing the key parameter currently being generated;
+ it's useful for interactive applications where a user is
+ waiting for a key to be generated.
+
+ e : int
+ Public RSA exponent. It must be an odd positive integer.
+ It is typically a small number with very few ones in its
+ binary representation.
+ The default value 65537 (= ``0b10000000000000001`` ) is a safe
+ choice: other common values are 5, 7, 17, and 257.
+
+ :attention: You should always use a cryptographically secure random number generator,
+ such as the one defined in the ``Crypto.Random`` module; **don't** just use the
+ current time and the ``random`` module.
+
+ :attention: Exponent 3 is also widely used, but it requires very special care when padding
+ the message.
+
+ :Return: An RSA key object (`_RSAobj`).
+
+ :Raise ValueError:
+ When **bits** is too little or not a multiple of 256, or when
+ **e** is not odd or smaller than 2.
+ """
+ if bits < 1024 or (bits & 0xff) != 0:
+ # pubkey.getStrongPrime doesn't like anything that's not a multiple of 256 and >= 1024
+ raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
+ if e%2==0 or e<3:
+ raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
+ rf = self._get_randfunc(randfunc)
+ obj = _RSA.generate_py(bits, rf, progress_func, e) # TODO: Don't use legacy _RSA module
+ key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
+ return _RSAobj(self, key)
+
+ def construct(self, tup):
+ """Construct an RSA key from a tuple of valid RSA components.
+
+ The modulus **n** must be the product of two primes.
+ The public exponent **e** must be odd and larger than 1.
+
+ In case of a private key, the following equations must apply:
+
+ - e != 1
+ - p*q = n
+ - e*d = 1 mod (p-1)(q-1)
+ - p*u = 1 mod q
+
+ :Parameters:
+ tup : tuple
+ A tuple of long integers, with at least 2 and no
+ more than 6 items. The items come in the following order:
+
+ 1. RSA modulus (n).
+ 2. Public exponent (e).
+ 3. Private exponent (d). Only required if the key is private.
+ 4. First factor of n (p). Optional.
+ 5. Second factor of n (q). Optional.
+ 6. CRT coefficient, (1/p) mod q (u). Optional.
+
+ :Return: An RSA key object (`_RSAobj`).
+ """
+ key = self._math.rsa_construct(*tup)
+ return _RSAobj(self, key)
+
+ def _importKeyDER(self, externKey):
+ """Import an RSA key (public or private half), encoded in DER form."""
+
+ try:
+
+ der = DerSequence()
+ der.decode(externKey, True)
+
+ # Try PKCS#1 first, for a private key
+ if len(der)==9 and der.hasOnlyInts() and der[0]==0:
+ # ASN.1 RSAPrivateKey element
+ del der[6:] # Remove d mod (p-1), d mod (q-1), and q^{-1} mod p
+ der.append(inverse(der[4],der[5])) # Add p^{-1} mod q
+ del der[0] # Remove version
+ return self.construct(der[:])
+
+ # Keep on trying PKCS#1, but now for a public key
+ if len(der)==2:
+ # The DER object is an RSAPublicKey SEQUENCE with two elements
+ if der.hasOnlyInts():
+ return self.construct(der[:])
+ # The DER object is a SubjectPublicKeyInfo SEQUENCE with two elements:
+ # an 'algorithm' (or 'algorithmIdentifier') SEQUENCE and a 'subjectPublicKey' BIT STRING.
+ # 'algorithm' takes the value given a few lines above.
+ # 'subjectPublicKey' encapsulates the actual ASN.1 RSAPublicKey element.
+ if der[0]==algorithmIdentifier:
+ bitmap = DerObject()
+ bitmap.decode(der[1], True)
+ if bitmap.isType('BIT STRING') and bord(bitmap.payload[0])==0x00:
+ der.decode(bitmap.payload[1:], True)
+ if len(der)==2 and der.hasOnlyInts():
+ return self.construct(der[:])
+
+ # Try unencrypted PKCS#8
+ if der[0]==0:
+ # The second element in the SEQUENCE is algorithmIdentifier.
+ # It must say RSA (see above for description).
+ if der[1]==algorithmIdentifier:
+ privateKey = DerObject()
+ privateKey.decode(der[2], True)
+ if privateKey.isType('OCTET STRING'):
+ return self._importKeyDER(privateKey.payload)
+
+ except ValueError, IndexError:
+ pass
+
+ raise ValueError("RSA key format is not supported")
+
+ def importKey(self, externKey, passphrase=None):
+ """Import an RSA key (public or private half), encoded in standard form.
+
+ :Parameter externKey:
+ The RSA key to import, encoded as a string.
+
+ An RSA public key can be in any of the following formats:
+
+ - X.509 `subjectPublicKeyInfo` DER SEQUENCE (binary or PEM encoding)
+ - `PKCS#1`_ `RSAPublicKey` DER SEQUENCE (binary or PEM encoding)
+ - OpenSSH (textual public key only)
+
+ An RSA private key can be in any of the following formats:
+
+ - PKCS#1 `RSAPrivateKey` DER SEQUENCE (binary or PEM encoding)
+ - `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE (binary or PEM encoding)
+ - OpenSSH (textual public key only)
+
+ For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
+
+ In case of PEM encoding, the private key can be encrypted with DES or 3TDES according to a certain ``pass phrase``.
+ Only OpenSSL-compatible pass phrases are supported.
+ :Type externKey: string
+
+ :Parameter passphrase:
+ In case of an encrypted PEM key, this is the pass phrase from which the encryption key is derived.
+ :Type passphrase: string
+
+ :Return: An RSA key object (`_RSAobj`).
+
+ :Raise ValueError/IndexError/TypeError:
+ When the given key cannot be parsed (possibly because the pass phrase is wrong).
+
+ .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
+ .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
+ .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
+ .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
+ """
+ externKey = tobytes(externKey)
+ if passphrase is not None:
+ passphrase = tobytes(passphrase)
+
+ if externKey.startswith(b('-----')):
+ # This is probably a PEM encoded key
+ lines = externKey.replace(b(" "),b('')).split()
+ keyobj = None
+
+ # The encrypted PEM format
+ if lines[1].startswith(b('Proc-Type:4,ENCRYPTED')):
+ DEK = lines[2].split(b(':'))
+ if len(DEK)!=2 or DEK[0]!=b('DEK-Info') or not passphrase:
+ raise ValueError("PEM encryption format not supported.")
+ algo, salt = DEK[1].split(b(','))
+ salt = binascii.a2b_hex(salt)
+ import Crypto.Hash.MD5
+ from Crypto.Cipher import DES, DES3
+ from Crypto.Protocol.KDF import PBKDF1
+ if algo==b("DES-CBC"):
+ # This is EVP_BytesToKey in OpenSSL
+ key = PBKDF1(passphrase, salt, 8, 1, Crypto.Hash.MD5)
+ keyobj = DES.new(key, Crypto.Cipher.DES.MODE_CBC, salt)
+ elif algo==b("DES-EDE3-CBC"):
+ # Note that EVP_BytesToKey is note exactly the same as PBKDF1
+ key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
+ key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
+ keyobj = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
+ else:
+ raise ValueError("Unsupport PEM encryption algorithm.")
+ lines = lines[2:]
+
+ der = binascii.a2b_base64(b('').join(lines[1:-1]))
+ if keyobj:
+ der = keyobj.decrypt(der)
+ padding = bord(der[-1])
+ der = der[:-padding]
+ return self._importKeyDER(der)
+
+ if externKey.startswith(b('ssh-rsa ')):
+ # This is probably an OpenSSH key
+ keystring = binascii.a2b_base64(externKey.split(b(' '))[1])
+ keyparts = []
+ while len(keystring)>4:
+ l = struct.unpack(">I",keystring[:4])[0]
+ keyparts.append(keystring[4:4+l])
+ keystring = keystring[4+l:]
+ e = bytes_to_long(keyparts[1])
+ n = bytes_to_long(keyparts[2])
+ return self.construct([n, e])
+ if bord(externKey[0])==0x30:
+ # This is probably a DER encoded key
+ return self._importKeyDER(externKey)
+
+ raise ValueError("RSA key format is not supported")
+
+#: This is the ASN.1 DER object that qualifies an algorithm as
+#: compliant to PKCS#1 (that is, the standard RSA).
+# It is found in all 'algorithm' fields (also called 'algorithmIdentifier').
+# It is a SEQUENCE with the oid assigned to RSA and with its parameters (none).
+# 0x06 0x09 OBJECT IDENTIFIER, 9 bytes of payload
+# 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01
+# rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1)
+# 0x05 0x00 NULL
+algorithmIdentifier = DerSequence(
+ [ b('\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01'),
+ DerNull().encode() ]
+ ).encode()
+
+_impl = RSAImplementation()
+#:
+#: Randomly generate a fresh, new RSA key object.
+#:
+#: See `RSAImplementation.generate`.
+#:
+generate = _impl.generate
+#:
+#: Construct an RSA key object from a tuple of valid RSA components.
+#:
+#: See `RSAImplementation.construct`.
+#:
+construct = _impl.construct
+#:
+#: Import an RSA key (public or private half), encoded in standard form.
+#:
+#: See `RSAImplementation.importKey`.
+#:
+importKey = _impl.importKey
+error = _impl.error
+
+# vim:set ts=4 sw=4 sts=4 expandtab:
+
diff --git a/lib/Python/Lib/Crypto/PublicKey/_DSA.py b/lib/Python/Lib/Crypto/PublicKey/_DSA.py
new file mode 100644
index 000000000..6b7a96491
--- /dev/null
+++ b/lib/Python/Lib/Crypto/PublicKey/_DSA.py
@@ -0,0 +1,115 @@
+
+#
+# DSA.py : Digital Signature Algorithm
+#
+# Part of the Python Cryptography Toolkit
+#
+# Written by Andrew Kuchling, Paul Swartz, and others
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+#
+
+__revision__ = "$Id$"
+
+from Crypto.PublicKey.pubkey import *
+from Crypto.Util import number
+from Crypto.Util.number import bytes_to_long, long_to_bytes
+from Crypto.Hash import SHA
+from Crypto.Util.py3compat import *
+
+class error (Exception):
+ pass
+
+def generateQ(randfunc):
+ S=randfunc(20)
+ hash1=SHA.new(S).digest()
+ hash2=SHA.new(long_to_bytes(bytes_to_long(S)+1)).digest()
+ q = bignum(0)
+ for i in range(0,20):
+ c=bord(hash1[i])^bord(hash2[i])
+ if i==0:
+ c=c | 128
+ if i==19:
+ c= c | 1
+ q=q*256+c
+ while (not isPrime(q)):
+ q=q+2
+ if pow(2,159L) < q < pow(2,160L):
+ return S, q
+ raise RuntimeError('Bad q value generated')
+
+def generate_py(bits, randfunc, progress_func=None):
+ """generate(bits:int, randfunc:callable, progress_func:callable)
+
+ Generate a DSA key of length 'bits', using 'randfunc' to get
+ random data and 'progress_func', if present, to display
+ the progress of the key generation.
+ """
+
+ if bits<160:
+ raise ValueError('Key length < 160 bits')
+ obj=DSAobj()
+ # Generate string S and prime q
+ if progress_func:
+ progress_func('p,q\n')
+ while (1):
+ S, obj.q = generateQ(randfunc)
+ n=divmod(bits-1, 160)[0]
+ C, N, V = 0, 2, {}
+ b=(obj.q >> 5) & 15
+ powb=pow(bignum(2), b)
+ powL1=pow(bignum(2), bits-1)
+ while C<4096:
+ for k in range(0, n+1):
+ V[k]=bytes_to_long(SHA.new(S+bstr(N)+bstr(k)).digest())
+ W=V[n] % powb
+ for k in range(n-1, -1, -1):
+ W=(W<<160L)+V[k]
+ X=W+powL1
+ p=X-(X%(2*obj.q)-1)
+ if powL1<=p and isPrime(p):
+ break
+ C, N = C+1, N+n+1
+ if C<4096:
+ break
+ if progress_func:
+ progress_func('4096 multiples failed\n')
+
+ obj.p = p
+ power=divmod(p-1, obj.q)[0]
+ if progress_func:
+ progress_func('h,g\n')
+ while (1):
+ h=bytes_to_long(randfunc(bits)) % (p-1)
+ g=pow(h, power, p)
+ if 1<h<p-1 and g>1:
+ break
+ obj.g=g
+ if progress_func:
+ progress_func('x,y\n')
+ while (1):
+ x=bytes_to_long(randfunc(20))
+ if 0 < x < obj.q:
+ break
+ obj.x, obj.y = x, pow(g, x, p)
+ return obj
+
+class DSAobj:
+ pass
+
diff --git a/lib/Python/Lib/Crypto/PublicKey/_RSA.py b/lib/Python/Lib/Crypto/PublicKey/_RSA.py
new file mode 100644
index 000000000..9366d19de
--- /dev/null
+++ b/lib/Python/Lib/Crypto/PublicKey/_RSA.py
@@ -0,0 +1,81 @@
+#
+# RSA.py : RSA encryption/decryption
+#
+# Part of the Python Cryptography Toolkit
+#
+# Written by Andrew Kuchling, Paul Swartz, and others
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+#
+
+__revision__ = "$Id$"
+
+from Crypto.PublicKey import pubkey
+from Crypto.Util import number
+
+def generate_py(bits, randfunc, progress_func=None, e=65537):
+ """generate(bits:int, randfunc:callable, progress_func:callable, e:int)
+
+ Generate an RSA key of length 'bits', public exponent 'e'(which must be
+ odd), using 'randfunc' to get random data and 'progress_func',
+ if present, to display the progress of the key generation.
+ """
+ obj=RSAobj()
+ obj.e = long(e)
+
+ # Generate the prime factors of n
+ if progress_func:
+ progress_func('p,q\n')
+ p = q = 1L
+ while number.size(p*q) < bits:
+ # Note that q might be one bit longer than p if somebody specifies an odd
+ # number of bits for the key. (Why would anyone do that? You don't get
+ # more security.)
+ p = pubkey.getStrongPrime(bits>>1, obj.e, 1e-12, randfunc)
+ q = pubkey.getStrongPrime(bits - (bits>>1), obj.e, 1e-12, randfunc)
+
+ # It's OK for p to be larger than q, but let's be
+ # kind to the function that will invert it for
+ # th calculation of u.
+ if p > q:
+ (p, q)=(q, p)
+ obj.p = p
+ obj.q = q
+
+ if progress_func:
+ progress_func('u\n')
+ obj.u = pubkey.inverse(obj.p, obj.q)
+ obj.n = obj.p*obj.q
+
+ if progress_func:
+ progress_func('d\n')
+ obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1))
+
+ assert bits <= 1+obj.size(), "Generated key is too small"
+
+ return obj
+
+class RSAobj(pubkey.pubkey):
+
+ def size(self):
+ """size() : int
+ Return the maximum number of bits that can be handled by this key.
+ """
+ return number.size(self.n) - 1
+
diff --git a/lib/Python/Lib/Crypto/PublicKey/__init__.py b/lib/Python/Lib/Crypto/PublicKey/__init__.py
new file mode 100644
index 000000000..503809fa7
--- /dev/null
+++ b/lib/Python/Lib/Crypto/PublicKey/__init__.py
@@ -0,0 +1,41 @@
+# -*- coding: utf-8 -*-
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""Public-key encryption and signature algorithms.
+
+Public-key encryption uses two different keys, one for encryption and
+one for decryption. The encryption key can be made public, and the
+decryption key is kept private. Many public-key algorithms can also
+be used to sign messages, and some can *only* be used for signatures.
+
+======================== =============================================
+Module Description
+======================== =============================================
+Crypto.PublicKey.DSA Digital Signature Algorithm (Signature only)
+Crypto.PublicKey.ElGamal (Signing and encryption)
+Crypto.PublicKey.RSA (Signing, encryption, and blinding)
+======================== =============================================
+
+:undocumented: _DSA, _RSA, _fastmath, _slowmath, pubkey
+"""
+
+__all__ = ['RSA', 'DSA', 'ElGamal']
+__revision__ = "$Id$"
+
diff --git a/lib/Python/Lib/Crypto/PublicKey/_slowmath.py b/lib/Python/Lib/Crypto/PublicKey/_slowmath.py
new file mode 100644
index 000000000..d926596e2
--- /dev/null
+++ b/lib/Python/Lib/Crypto/PublicKey/_slowmath.py
@@ -0,0 +1,187 @@
+# -*- coding: utf-8 -*-
+#
+# PubKey/RSA/_slowmath.py : Pure Python implementation of the RSA portions of _fastmath
+#
+# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""Pure Python implementation of the RSA-related portions of Crypto.PublicKey._fastmath."""
+
+__revision__ = "$Id$"
+
+__all__ = ['rsa_construct']
+
+import sys
+
+if sys.version_info[0] == 2 and sys.version_info[1] == 1:
+ from Crypto.Util.py21compat import *
+from Crypto.Util.number import size, inverse, GCD
+
+class error(Exception):
+ pass
+
+class _RSAKey(object):
+ def _blind(self, m, r):
+ # compute r**e * m (mod n)
+ return m * pow(r, self.e, self.n)
+
+ def _unblind(self, m, r):
+ # compute m / r (mod n)
+ return inverse(r, self.n) * m % self.n
+
+ def _decrypt(self, c):
+ # compute c**d (mod n)
+ if not self.has_private():
+ raise TypeError("No private key")
+ if (hasattr(self,'p') and hasattr(self,'q') and hasattr(self,'u')):
+ m1 = pow(c, self.d % (self.p-1), self.p)
+ m2 = pow(c, self.d % (self.q-1), self.q)
+ h = m2 - m1
+ if (h<0):
+ h = h + self.q
+ h = h*self.u % self.q
+ return h*self.p+m1
+ return pow(c, self.d, self.n)
+
+ def _encrypt(self, m):
+ # compute m**d (mod n)
+ return pow(m, self.e, self.n)
+
+ def _sign(self, m): # alias for _decrypt
+ if not self.has_private():
+ raise TypeError("No private key")
+ return self._decrypt(m)
+
+ def _verify(self, m, sig):
+ return self._encrypt(sig) == m
+
+ def has_private(self):
+ return hasattr(self, 'd')
+
+ def size(self):
+ """Return the maximum number of bits that can be encrypted"""
+ return size(self.n) - 1
+
+def rsa_construct(n, e, d=None, p=None, q=None, u=None):
+ """Construct an RSAKey object"""
+ assert isinstance(n, long)
+ assert isinstance(e, long)
+ assert isinstance(d, (long, type(None)))
+ assert isinstance(p, (long, type(None)))
+ assert isinstance(q, (long, type(None)))
+ assert isinstance(u, (long, type(None)))
+ obj = _RSAKey()
+ obj.n = n
+ obj.e = e
+ if d is None:
+ return obj
+ obj.d = d
+ if p is not None and q is not None:
+ obj.p = p
+ obj.q = q
+ else:
+ # Compute factors p and q from the private exponent d.
+ # We assume that n has no more than two factors.
+ # See 8.2.2(i) in Handbook of Applied Cryptography.
+ ktot = d*e-1
+ # The quantity d*e-1 is a multiple of phi(n), even,
+ # and can be represented as t*2^s.
+ t = ktot
+ while t%2==0:
+ t=divmod(t,2)[0]
+ # Cycle through all multiplicative inverses in Zn.
+ # The algorithm is non-deterministic, but there is a 50% chance
+ # any candidate a leads to successful factoring.
+ # See "Digitalized Signatures and Public Key Functions as Intractable
+ # as Factorization", M. Rabin, 1979
+ spotted = 0
+ a = 2
+ while not spotted and a<100:
+ k = t
+ # Cycle through all values a^{t*2^i}=a^k
+ while k<ktot:
+ cand = pow(a,k,n)
+ # Check if a^k is a non-trivial root of unity (mod n)
+ if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
+ # We have found a number such that (cand-1)(cand+1)=0 (mod n).
+ # Either of the terms divides n.
+ obj.p = GCD(cand+1,n)
+ spotted = 1
+ break
+ k = k*2
+ # This value was not any good... let's try another!
+ a = a+2
+ if not spotted:
+ raise ValueError("Unable to compute factors p and q from exponent d.")
+ # Found !
+ assert ((n % obj.p)==0)
+ obj.q = divmod(n,obj.p)[0]
+ if u is not None:
+ obj.u = u
+ else:
+ obj.u = inverse(obj.p, obj.q)
+ return obj
+
+class _DSAKey(object):
+ def size(self):
+ """Return the maximum number of bits that can be encrypted"""
+ return size(self.p) - 1
+
+ def has_private(self):
+ return hasattr(self, 'x')
+
+ def _sign(self, m, k): # alias for _decrypt
+ # SECURITY TODO - We _should_ be computing SHA1(m), but we don't because that's the API.
+ if not self.has_private():
+ raise TypeError("No private key")
+ if not (1L < k < self.q):
+ raise ValueError("k is not between 2 and q-1")
+ inv_k = inverse(k, self.q) # Compute k**-1 mod q
+ r = pow(self.g, k, self.p) % self.q # r = (g**k mod p) mod q
+ s = (inv_k * (m + self.x * r)) % self.q
+ return (r, s)
+
+ def _verify(self, m, r, s):
+ # SECURITY TODO - We _should_ be computing SHA1(m), but we don't because that's the API.
+ if not (0 < r < self.q) or not (0 < s < self.q):
+ return False
+ w = inverse(s, self.q)
+ u1 = (m*w) % self.q
+ u2 = (r*w) % self.q
+ v = (pow(self.g, u1, self.p) * pow(self.y, u2, self.p) % self.p) % self.q
+ return v == r
+
+def dsa_construct(y, g, p, q, x=None):
+ assert isinstance(y, long)
+ assert isinstance(g, long)
+ assert isinstance(p, long)
+ assert isinstance(q, long)
+ assert isinstance(x, (long, type(None)))
+ obj = _DSAKey()
+ obj.y = y
+ obj.g = g
+ obj.p = p
+ obj.q = q
+ if x is not None: obj.x = x
+ return obj
+
+
+# vim:set ts=4 sw=4 sts=4 expandtab:
+
diff --git a/lib/Python/Lib/Crypto/PublicKey/pubkey.py b/lib/Python/Lib/Crypto/PublicKey/pubkey.py
new file mode 100644
index 000000000..e44de8fca
--- /dev/null
+++ b/lib/Python/Lib/Crypto/PublicKey/pubkey.py
@@ -0,0 +1,240 @@
+#
+# pubkey.py : Internal functions for public key operations
+#
+# Part of the Python Cryptography Toolkit
+#
+# Written by Andrew Kuchling, Paul Swartz, and others
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+#
+
+__revision__ = "$Id$"
+
+import types, warnings
+from Crypto.Util.number import *
+
+# Basic public key class
+class pubkey:
+ """An abstract class for a public key object.
+
+ :undocumented: __getstate__, __setstate__, __eq__, __ne__, validate
+ """
+ def __init__(self):
+ pass
+
+ def __getstate__(self):
+ """To keep key objects platform-independent, the key data is
+ converted to standard Python long integers before being
+ written out. It will then be reconverted as necessary on
+ restoration."""
+ d=self.__dict__
+ for key in self.keydata:
+ if d.has_key(key): d[key]=long(d[key])
+ return d
+
+ def __setstate__(self, d):
+ """On unpickling a key object, the key data is converted to the big
+number representation being used, whether that is Python long
+integers, MPZ objects, or whatever."""
+ for key in self.keydata:
+ if d.has_key(key): self.__dict__[key]=bignum(d[key])
+
+ def encrypt(self, plaintext, K):
+ """Encrypt a piece of data.
+
+ :Parameter plaintext: The piece of data to encrypt.
+ :Type plaintext: byte string or long
+
+ :Parameter K: A random parameter required by some algorithms
+ :Type K: byte string or long
+
+ :Return: A tuple with two items. Each item is of the same type as the
+ plaintext (string or long).
+ """
+ wasString=0
+ if isinstance(plaintext, types.StringType):
+ plaintext=bytes_to_long(plaintext) ; wasString=1
+ if isinstance(K, types.StringType):
+ K=bytes_to_long(K)
+ ciphertext=self._encrypt(plaintext, K)
+ if wasString: return tuple(map(long_to_bytes, ciphertext))
+ else: return ciphertext
+
+ def decrypt(self, ciphertext):
+ """Decrypt a piece of data.
+
+ :Parameter ciphertext: The piece of data to decrypt.
+ :Type ciphertext: byte string, long or a 2-item tuple as returned by `encrypt`
+
+ :Return: A byte string if ciphertext was a byte string or a tuple
+ of byte strings. A long otherwise.
+ """
+ wasString=0
+ if not isinstance(ciphertext, types.TupleType):
+ ciphertext=(ciphertext,)
+ if isinstance(ciphertext[0], types.StringType):
+ ciphertext=tuple(map(bytes_to_long, ciphertext)) ; wasString=1
+ plaintext=self._decrypt(ciphertext)
+ if wasString: return long_to_bytes(plaintext)
+ else: return plaintext
+
+ def sign(self, M, K):
+ """Sign a piece of data.
+
+ :Parameter M: The piece of data to encrypt.
+ :Type M: byte string or long
+
+ :Parameter K: A random parameter required by some algorithms
+ :Type K: byte string or long
+
+ :Return: A tuple with two items.
+ """
+ if (not self.has_private()):
+ raise TypeError('Private key not available in this object')
+ if isinstance(M, types.StringType): M=bytes_to_long(M)
+ if isinstance(K, types.StringType): K=bytes_to_long(K)
+ return self._sign(M, K)
+
+ def verify (self, M, signature):
+ """Verify the validity of a signature.
+
+ :Parameter M: The expected message.
+ :Type M: byte string or long
+
+ :Parameter signature: The signature to verify.
+ :Type signature: tuple with two items, as return by `sign`
+
+ :Return: True if the signature is correct, False otherwise.
+ """
+ if isinstance(M, types.StringType): M=bytes_to_long(M)
+ return self._verify(M, signature)
+
+ # alias to compensate for the old validate() name
+ def validate (self, M, signature):
+ warnings.warn("validate() method name is obsolete; use verify()",
+ DeprecationWarning)
+
+ def blind(self, M, B):
+ """Blind a message to prevent certain side-channel attacks.
+
+ :Parameter M: The message to blind.
+ :Type M: byte string or long
+
+ :Parameter B: Blinding factor.
+ :Type B: byte string or long
+
+ :Return: A byte string if M was so. A long otherwise.
+ """
+ wasString=0
+ if isinstance(M, types.StringType):
+ M=bytes_to_long(M) ; wasString=1
+ if isinstance(B, types.StringType): B=bytes_to_long(B)
+ blindedmessage=self._blind(M, B)
+ if wasString: return long_to_bytes(blindedmessage)
+ else: return blindedmessage
+
+ def unblind(self, M, B):
+ """Unblind a message after cryptographic processing.
+
+ :Parameter M: The encoded message to unblind.
+ :Type M: byte string or long
+
+ :Parameter B: Blinding factor.
+ :Type B: byte string or long
+ """
+ wasString=0
+ if isinstance(M, types.StringType):
+ M=bytes_to_long(M) ; wasString=1
+ if isinstance(B, types.StringType): B=bytes_to_long(B)
+ unblindedmessage=self._unblind(M, B)
+ if wasString: return long_to_bytes(unblindedmessage)
+ else: return unblindedmessage
+
+
+ # The following methods will usually be left alone, except for
+ # signature-only algorithms. They both return Boolean values
+ # recording whether this key's algorithm can sign and encrypt.
+ def can_sign (self):
+ """Tell if the algorithm can deal with cryptographic signatures.
+
+ This property concerns the *algorithm*, not the key itself.
+ It may happen that this particular key object hasn't got
+ the private information required to generate a signature.
+
+ :Return: boolean
+ """
+ return 1
+
+ def can_encrypt (self):
+ """Tell if the algorithm can deal with data encryption.
+
+ This property concerns the *algorithm*, not the key itself.
+ It may happen that this particular key object hasn't got
+ the private information required to decrypt data.
+
+ :Return: boolean
+ """
+ return 1
+
+ def can_blind (self):
+ """Tell if the algorithm can deal with data blinding.
+
+ This property concerns the *algorithm*, not the key itself.
+ It may happen that this particular key object hasn't got
+ the private information required carry out blinding.
+
+ :Return: boolean
+ """
+ return 0
+
+ # The following methods will certainly be overridden by
+ # subclasses.
+
+ def size (self):
+ """Tell the maximum number of bits that can be handled by this key.
+
+ :Return: int
+ """
+ return 0
+
+ def has_private (self):
+ """Tell if the key object contains private components.
+
+ :Return: bool
+ """
+ return 0
+
+ def publickey (self):
+ """Construct a new key carrying only the public information.
+
+ :Return: A new `pubkey` object.
+ """
+ return self
+
+ def __eq__ (self, other):
+ """__eq__(other): 0, 1
+ Compare us to other for equality.
+ """
+ return self.__getstate__() == other.__getstate__()
+
+ def __ne__ (self, other):
+ """__ne__(other): 0, 1
+ Compare us to other for inequality.
+ """
+ return not self.__eq__(other)