summaryrefslogtreecommitdiffstats
path: root/lib/Python/Lib/Crypto/PublicKey/RSA.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Python/Lib/Crypto/PublicKey/RSA.py')
-rw-r--r--lib/Python/Lib/Crypto/PublicKey/RSA.py719
1 files changed, 719 insertions, 0 deletions
diff --git a/lib/Python/Lib/Crypto/PublicKey/RSA.py b/lib/Python/Lib/Crypto/PublicKey/RSA.py
new file mode 100644
index 000000000..99d851ddb
--- /dev/null
+++ b/lib/Python/Lib/Crypto/PublicKey/RSA.py
@@ -0,0 +1,719 @@
+# -*- coding: utf-8 -*-
+#
+# PublicKey/RSA.py : RSA public key primitive
+#
+# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""RSA public-key cryptography algorithm (signature and encryption).
+
+RSA_ is the most widespread and used public key algorithm. Its security is
+based on the difficulty of factoring large integers. The algorithm has
+withstood attacks for 30 years, and it is therefore considered reasonably
+secure for new designs.
+
+The algorithm can be used for both confidentiality (encryption) and
+authentication (digital signature). It is worth noting that signing and
+decryption are significantly slower than verification and encryption.
+The cryptograhic strength is primarily linked to the length of the modulus *n*.
+In 2012, a sufficient length is deemed to be 2048 bits. For more information,
+see the most recent ECRYPT_ report.
+
+Both RSA ciphertext and RSA signature are as big as the modulus *n* (256
+bytes if *n* is 2048 bit long).
+
+This module provides facilities for generating fresh, new RSA keys, constructing
+them from known components, exporting them, and importing them.
+
+ >>> from Crypto.PublicKey import RSA
+ >>>
+ >>> key = RSA.generate(2048)
+ >>> f = open('mykey.pem','w')
+ >>> f.write(RSA.exportKey('PEM'))
+ >>> f.close()
+ ...
+ >>> f = open('mykey.pem','r')
+ >>> key = RSA.importKey(f.read())
+
+Even though you may choose to directly use the methods of an RSA key object
+to perform the primitive cryptographic operations (e.g. `_RSAobj.encrypt`),
+it is recommended to use one of the standardized schemes instead (like
+`Crypto.Cipher.PKCS1_v1_5` or `Crypto.Signature.PKCS1_v1_5`).
+
+.. _RSA: http://en.wikipedia.org/wiki/RSA_%28algorithm%29
+.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
+
+:sort: generate,construct,importKey,error
+"""
+
+__revision__ = "$Id$"
+
+__all__ = ['generate', 'construct', 'error', 'importKey', 'RSAImplementation', '_RSAobj']
+
+import sys
+if sys.version_info[0] == 2 and sys.version_info[1] == 1:
+ from Crypto.Util.py21compat import *
+from Crypto.Util.py3compat import *
+#from Crypto.Util.python_compat import *
+from Crypto.Util.number import getRandomRange, bytes_to_long, long_to_bytes
+
+from Crypto.PublicKey import _RSA, _slowmath, pubkey
+from Crypto import Random
+
+from Crypto.Util.asn1 import DerObject, DerSequence, DerNull
+import binascii
+import struct
+
+from Crypto.Util.number import inverse
+
+from Crypto.Util.number import inverse
+
+try:
+ from Crypto.PublicKey import _fastmath
+except ImportError:
+ _fastmath = None
+
+class _RSAobj(pubkey.pubkey):
+ """Class defining an actual RSA key.
+
+ :undocumented: __getstate__, __setstate__, __repr__, __getattr__
+ """
+ #: Dictionary of RSA parameters.
+ #:
+ #: A public key will only have the following entries:
+ #:
+ #: - **n**, the modulus.
+ #: - **e**, the public exponent.
+ #:
+ #: A private key will also have:
+ #:
+ #: - **d**, the private exponent.
+ #: - **p**, the first factor of n.
+ #: - **q**, the second factor of n.
+ #: - **u**, the CRT coefficient (1/p) mod q.
+ keydata = ['n', 'e', 'd', 'p', 'q', 'u']
+
+ def __init__(self, implementation, key, randfunc=None):
+ self.implementation = implementation
+ self.key = key
+ if randfunc is None:
+ randfunc = Random.new().read
+ self._randfunc = randfunc
+
+ def __getattr__(self, attrname):
+ if attrname in self.keydata:
+ # For backward compatibility, allow the user to get (not set) the
+ # RSA key parameters directly from this object.
+ return getattr(self.key, attrname)
+ else:
+ raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
+
+ def encrypt(self, plaintext, K):
+ """Encrypt a piece of data with RSA.
+
+ :Parameter plaintext: The piece of data to encrypt with RSA. It may not
+ be numerically larger than the RSA module (**n**).
+ :Type plaintext: byte string or long
+
+ :Parameter K: A random parameter (*for compatibility only. This
+ value will be ignored*)
+ :Type K: byte string or long
+
+ :attention: this function performs the plain, primitive RSA encryption
+ (*textbook*). In real applications, you always need to use proper
+ cryptographic padding, and you should not directly encrypt data with
+ this method. Failure to do so may lead to security vulnerabilities.
+ It is recommended to use modules
+ `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
+
+ :Return: A tuple with two items. The first item is the ciphertext
+ of the same type as the plaintext (string or long). The second item
+ is always None.
+ """
+ return pubkey.pubkey.encrypt(self, plaintext, K)
+
+ def decrypt(self, ciphertext):
+ """Decrypt a piece of data with RSA.
+
+ Decryption always takes place with blinding.
+
+ :attention: this function performs the plain, primitive RSA decryption
+ (*textbook*). In real applications, you always need to use proper
+ cryptographic padding, and you should not directly decrypt data with
+ this method. Failure to do so may lead to security vulnerabilities.
+ It is recommended to use modules
+ `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
+
+ :Parameter ciphertext: The piece of data to decrypt with RSA. It may
+ not be numerically larger than the RSA module (**n**). If a tuple,
+ the first item is the actual ciphertext; the second item is ignored.
+
+ :Type ciphertext: byte string, long or a 2-item tuple as returned by
+ `encrypt`
+
+ :Return: A byte string if ciphertext was a byte string or a tuple
+ of byte strings. A long otherwise.
+ """
+ return pubkey.pubkey.decrypt(self, ciphertext)
+
+ def sign(self, M, K):
+ """Sign a piece of data with RSA.
+
+ Signing always takes place with blinding.
+
+ :attention: this function performs the plain, primitive RSA decryption
+ (*textbook*). In real applications, you always need to use proper
+ cryptographic padding, and you should not directly sign data with
+ this method. Failure to do so may lead to security vulnerabilities.
+ It is recommended to use modules
+ `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
+
+ :Parameter M: The piece of data to sign with RSA. It may
+ not be numerically larger than the RSA module (**n**).
+ :Type M: byte string or long
+
+ :Parameter K: A random parameter (*for compatibility only. This
+ value will be ignored*)
+ :Type K: byte string or long
+
+ :Return: A 2-item tuple. The first item is the actual signature (a
+ long). The second item is always None.
+ """
+ return pubkey.pubkey.sign(self, M, K)
+
+ def verify(self, M, signature):
+ """Verify the validity of an RSA signature.
+
+ :attention: this function performs the plain, primitive RSA encryption
+ (*textbook*). In real applications, you always need to use proper
+ cryptographic padding, and you should not directly verify data with
+ this method. Failure to do so may lead to security vulnerabilities.
+ It is recommended to use modules
+ `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
+
+ :Parameter M: The expected message.
+ :Type M: byte string or long
+
+ :Parameter signature: The RSA signature to verify. The first item of
+ the tuple is the actual signature (a long not larger than the modulus
+ **n**), whereas the second item is always ignored.
+ :Type signature: A 2-item tuple as return by `sign`
+
+ :Return: True if the signature is correct, False otherwise.
+ """
+ return pubkey.pubkey.verify(self, M, signature)
+
+ def _encrypt(self, c, K):
+ return (self.key._encrypt(c),)
+
+ def _decrypt(self, c):
+ #(ciphertext,) = c
+ (ciphertext,) = c[:1] # HACK - We should use the previous line
+ # instead, but this is more compatible and we're
+ # going to replace the Crypto.PublicKey API soon
+ # anyway.
+
+ # Blinded RSA decryption (to prevent timing attacks):
+ # Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
+ r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
+ # Step 2: Compute c' = c * r**e mod n
+ cp = self.key._blind(ciphertext, r)
+ # Step 3: Compute m' = c'**d mod n (ordinary RSA decryption)
+ mp = self.key._decrypt(cp)
+ # Step 4: Compute m = m**(r-1) mod n
+ return self.key._unblind(mp, r)
+
+ def _blind(self, m, r):
+ return self.key._blind(m, r)
+
+ def _unblind(self, m, r):
+ return self.key._unblind(m, r)
+
+ def _sign(self, m, K=None):
+ return (self.key._sign(m),)
+
+ def _verify(self, m, sig):
+ #(s,) = sig
+ (s,) = sig[:1] # HACK - We should use the previous line instead, but
+ # this is more compatible and we're going to replace
+ # the Crypto.PublicKey API soon anyway.
+ return self.key._verify(m, s)
+
+ def has_private(self):
+ return self.key.has_private()
+
+ def size(self):
+ return self.key.size()
+
+ def can_blind(self):
+ return True
+
+ def can_encrypt(self):
+ return True
+
+ def can_sign(self):
+ return True
+
+ def publickey(self):
+ return self.implementation.construct((self.key.n, self.key.e))
+
+ def __getstate__(self):
+ d = {}
+ for k in self.keydata:
+ try:
+ d[k] = getattr(self.key, k)
+ except AttributeError:
+ pass
+ return d
+
+ def __setstate__(self, d):
+ if not hasattr(self, 'implementation'):
+ self.implementation = RSAImplementation()
+ t = []
+ for k in self.keydata:
+ if not d.has_key(k):
+ break
+ t.append(d[k])
+ self.key = self.implementation._math.rsa_construct(*tuple(t))
+
+ def __repr__(self):
+ attrs = []
+ for k in self.keydata:
+ if k == 'n':
+ attrs.append("n(%d)" % (self.size()+1,))
+ elif hasattr(self.key, k):
+ attrs.append(k)
+ if self.has_private():
+ attrs.append("private")
+ # PY3K: This is meant to be text, do not change to bytes (data)
+ return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
+
+ def exportKey(self, format='PEM', passphrase=None, pkcs=1):
+ """Export this RSA key.
+
+ :Parameter format: The format to use for wrapping the key.
+
+ - *'DER'*. Binary encoding, always unencrypted.
+ - *'PEM'*. Textual encoding, done according to `RFC1421`_/`RFC1423`_.
+ Unencrypted (default) or encrypted.
+ - *'OpenSSH'*. Textual encoding, done according to OpenSSH specification.
+ Only suitable for public keys (not private keys).
+ :Type format: string
+
+ :Parameter passphrase: In case of PEM, the pass phrase to derive the encryption key from.
+ :Type passphrase: string
+
+ :Parameter pkcs: The PKCS standard to follow for assembling the key.
+ You have two choices:
+
+ - with **1**, the public key is embedded into an X.509 `SubjectPublicKeyInfo` DER SEQUENCE.
+ The private key is embedded into a `PKCS#1`_ `RSAPrivateKey` DER SEQUENCE.
+ This mode is the default.
+ - with **8**, the private key is embedded into a `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE.
+ This mode is not available for public keys.
+
+ PKCS standards are not relevant for the *OpenSSH* format.
+ :Type pkcs: integer
+
+ :Return: A byte string with the encoded public or private half.
+ :Raise ValueError:
+ When the format is unknown.
+
+ .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
+ .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
+ .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
+ .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
+ """
+ if passphrase is not None:
+ passphrase = tobytes(passphrase)
+ if format=='OpenSSH':
+ eb = long_to_bytes(self.e)
+ nb = long_to_bytes(self.n)
+ if bord(eb[0]) & 0x80: eb=bchr(0x00)+eb
+ if bord(nb[0]) & 0x80: nb=bchr(0x00)+nb
+ keyparts = [ 'ssh-rsa', eb, nb ]
+ keystring = ''.join([ struct.pack(">I",len(kp))+kp for kp in keyparts])
+ return 'ssh-rsa '+binascii.b2a_base64(keystring)[:-1]
+
+ # DER format is always used, even in case of PEM, which simply
+ # encodes it into BASE64.
+ der = DerSequence()
+ if self.has_private():
+ keyType= { 1: 'RSA PRIVATE', 8: 'PRIVATE' }[pkcs]
+ der[:] = [ 0, self.n, self.e, self.d, self.p, self.q,
+ self.d % (self.p-1), self.d % (self.q-1),
+ inverse(self.q, self.p) ]
+ if pkcs==8:
+ derkey = der.encode()
+ der = DerSequence([0])
+ der.append(algorithmIdentifier)
+ der.append(DerObject('OCTET STRING', derkey).encode())
+ else:
+ keyType = "PUBLIC"
+ der.append(algorithmIdentifier)
+ bitmap = DerObject('BIT STRING')
+ derPK = DerSequence( [ self.n, self.e ] )
+ bitmap.payload = bchr(0x00) + derPK.encode()
+ der.append(bitmap.encode())
+ if format=='DER':
+ return der.encode()
+ if format=='PEM':
+ pem = b("-----BEGIN " + keyType + " KEY-----\n")
+ objenc = None
+ if passphrase and keyType.endswith('PRIVATE'):
+ # We only support 3DES for encryption
+ import Crypto.Hash.MD5
+ from Crypto.Cipher import DES3
+ from Crypto.Protocol.KDF import PBKDF1
+ salt = self._randfunc(8)
+ key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
+ key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
+ objenc = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
+ pem += b('Proc-Type: 4,ENCRYPTED\n')
+ pem += b('DEK-Info: DES-EDE3-CBC,') + binascii.b2a_hex(salt).upper() + b('\n\n')
+
+ binaryKey = der.encode()
+ if objenc:
+ # Add PKCS#7-like padding
+ padding = objenc.block_size-len(binaryKey)%objenc.block_size
+ binaryKey = objenc.encrypt(binaryKey+bchr(padding)*padding)
+
+ # Each BASE64 line can take up to 64 characters (=48 bytes of data)
+ chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ]
+ pem += b('').join(chunks)
+ pem += b("-----END " + keyType + " KEY-----")
+ return pem
+ return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
+
+class RSAImplementation(object):
+ """
+ An RSA key factory.
+
+ This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` module.
+
+ :sort: __init__,generate,construct,importKey
+ :undocumented: _g*, _i*
+ """
+
+ def __init__(self, **kwargs):
+ """Create a new RSA key factory.
+
+ :Keywords:
+ use_fast_math : bool
+ Specify which mathematic library to use:
+
+ - *None* (default). Use fastest math available.
+ - *True* . Use fast math.
+ - *False* . Use slow math.
+ default_randfunc : callable
+ Specify how to collect random data:
+
+ - *None* (default). Use Random.new().read().
+ - not *None* . Use the specified function directly.
+ :Raise RuntimeError:
+ When **use_fast_math** =True but fast math is not available.
+ """
+ use_fast_math = kwargs.get('use_fast_math', None)
+ if use_fast_math is None: # Automatic
+ if _fastmath is not None:
+ self._math = _fastmath
+ else:
+ self._math = _slowmath
+
+ elif use_fast_math: # Explicitly select fast math
+ if _fastmath is not None:
+ self._math = _fastmath
+ else:
+ raise RuntimeError("fast math module not available")
+
+ else: # Explicitly select slow math
+ self._math = _slowmath
+
+ self.error = self._math.error
+
+ self._default_randfunc = kwargs.get('default_randfunc', None)
+ self._current_randfunc = None
+
+ def _get_randfunc(self, randfunc):
+ if randfunc is not None:
+ return randfunc
+ elif self._current_randfunc is None:
+ self._current_randfunc = Random.new().read
+ return self._current_randfunc
+
+ def generate(self, bits, randfunc=None, progress_func=None, e=65537):
+ """Randomly generate a fresh, new RSA key.
+
+ :Parameters:
+ bits : int
+ Key length, or size (in bits) of the RSA modulus.
+ It must be a multiple of 256, and no smaller than 1024.
+
+ randfunc : callable
+ Random number generation function; it should accept
+ a single integer N and return a string of random data
+ N bytes long.
+ If not specified, a new one will be instantiated
+ from ``Crypto.Random``.
+
+ progress_func : callable
+ Optional function that will be called with a short string
+ containing the key parameter currently being generated;
+ it's useful for interactive applications where a user is
+ waiting for a key to be generated.
+
+ e : int
+ Public RSA exponent. It must be an odd positive integer.
+ It is typically a small number with very few ones in its
+ binary representation.
+ The default value 65537 (= ``0b10000000000000001`` ) is a safe
+ choice: other common values are 5, 7, 17, and 257.
+
+ :attention: You should always use a cryptographically secure random number generator,
+ such as the one defined in the ``Crypto.Random`` module; **don't** just use the
+ current time and the ``random`` module.
+
+ :attention: Exponent 3 is also widely used, but it requires very special care when padding
+ the message.
+
+ :Return: An RSA key object (`_RSAobj`).
+
+ :Raise ValueError:
+ When **bits** is too little or not a multiple of 256, or when
+ **e** is not odd or smaller than 2.
+ """
+ if bits < 1024 or (bits & 0xff) != 0:
+ # pubkey.getStrongPrime doesn't like anything that's not a multiple of 256 and >= 1024
+ raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
+ if e%2==0 or e<3:
+ raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
+ rf = self._get_randfunc(randfunc)
+ obj = _RSA.generate_py(bits, rf, progress_func, e) # TODO: Don't use legacy _RSA module
+ key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
+ return _RSAobj(self, key)
+
+ def construct(self, tup):
+ """Construct an RSA key from a tuple of valid RSA components.
+
+ The modulus **n** must be the product of two primes.
+ The public exponent **e** must be odd and larger than 1.
+
+ In case of a private key, the following equations must apply:
+
+ - e != 1
+ - p*q = n
+ - e*d = 1 mod (p-1)(q-1)
+ - p*u = 1 mod q
+
+ :Parameters:
+ tup : tuple
+ A tuple of long integers, with at least 2 and no
+ more than 6 items. The items come in the following order:
+
+ 1. RSA modulus (n).
+ 2. Public exponent (e).
+ 3. Private exponent (d). Only required if the key is private.
+ 4. First factor of n (p). Optional.
+ 5. Second factor of n (q). Optional.
+ 6. CRT coefficient, (1/p) mod q (u). Optional.
+
+ :Return: An RSA key object (`_RSAobj`).
+ """
+ key = self._math.rsa_construct(*tup)
+ return _RSAobj(self, key)
+
+ def _importKeyDER(self, externKey):
+ """Import an RSA key (public or private half), encoded in DER form."""
+
+ try:
+
+ der = DerSequence()
+ der.decode(externKey, True)
+
+ # Try PKCS#1 first, for a private key
+ if len(der)==9 and der.hasOnlyInts() and der[0]==0:
+ # ASN.1 RSAPrivateKey element
+ del der[6:] # Remove d mod (p-1), d mod (q-1), and q^{-1} mod p
+ der.append(inverse(der[4],der[5])) # Add p^{-1} mod q
+ del der[0] # Remove version
+ return self.construct(der[:])
+
+ # Keep on trying PKCS#1, but now for a public key
+ if len(der)==2:
+ # The DER object is an RSAPublicKey SEQUENCE with two elements
+ if der.hasOnlyInts():
+ return self.construct(der[:])
+ # The DER object is a SubjectPublicKeyInfo SEQUENCE with two elements:
+ # an 'algorithm' (or 'algorithmIdentifier') SEQUENCE and a 'subjectPublicKey' BIT STRING.
+ # 'algorithm' takes the value given a few lines above.
+ # 'subjectPublicKey' encapsulates the actual ASN.1 RSAPublicKey element.
+ if der[0]==algorithmIdentifier:
+ bitmap = DerObject()
+ bitmap.decode(der[1], True)
+ if bitmap.isType('BIT STRING') and bord(bitmap.payload[0])==0x00:
+ der.decode(bitmap.payload[1:], True)
+ if len(der)==2 and der.hasOnlyInts():
+ return self.construct(der[:])
+
+ # Try unencrypted PKCS#8
+ if der[0]==0:
+ # The second element in the SEQUENCE is algorithmIdentifier.
+ # It must say RSA (see above for description).
+ if der[1]==algorithmIdentifier:
+ privateKey = DerObject()
+ privateKey.decode(der[2], True)
+ if privateKey.isType('OCTET STRING'):
+ return self._importKeyDER(privateKey.payload)
+
+ except ValueError, IndexError:
+ pass
+
+ raise ValueError("RSA key format is not supported")
+
+ def importKey(self, externKey, passphrase=None):
+ """Import an RSA key (public or private half), encoded in standard form.
+
+ :Parameter externKey:
+ The RSA key to import, encoded as a string.
+
+ An RSA public key can be in any of the following formats:
+
+ - X.509 `subjectPublicKeyInfo` DER SEQUENCE (binary or PEM encoding)
+ - `PKCS#1`_ `RSAPublicKey` DER SEQUENCE (binary or PEM encoding)
+ - OpenSSH (textual public key only)
+
+ An RSA private key can be in any of the following formats:
+
+ - PKCS#1 `RSAPrivateKey` DER SEQUENCE (binary or PEM encoding)
+ - `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE (binary or PEM encoding)
+ - OpenSSH (textual public key only)
+
+ For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
+
+ In case of PEM encoding, the private key can be encrypted with DES or 3TDES according to a certain ``pass phrase``.
+ Only OpenSSL-compatible pass phrases are supported.
+ :Type externKey: string
+
+ :Parameter passphrase:
+ In case of an encrypted PEM key, this is the pass phrase from which the encryption key is derived.
+ :Type passphrase: string
+
+ :Return: An RSA key object (`_RSAobj`).
+
+ :Raise ValueError/IndexError/TypeError:
+ When the given key cannot be parsed (possibly because the pass phrase is wrong).
+
+ .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
+ .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
+ .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
+ .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
+ """
+ externKey = tobytes(externKey)
+ if passphrase is not None:
+ passphrase = tobytes(passphrase)
+
+ if externKey.startswith(b('-----')):
+ # This is probably a PEM encoded key
+ lines = externKey.replace(b(" "),b('')).split()
+ keyobj = None
+
+ # The encrypted PEM format
+ if lines[1].startswith(b('Proc-Type:4,ENCRYPTED')):
+ DEK = lines[2].split(b(':'))
+ if len(DEK)!=2 or DEK[0]!=b('DEK-Info') or not passphrase:
+ raise ValueError("PEM encryption format not supported.")
+ algo, salt = DEK[1].split(b(','))
+ salt = binascii.a2b_hex(salt)
+ import Crypto.Hash.MD5
+ from Crypto.Cipher import DES, DES3
+ from Crypto.Protocol.KDF import PBKDF1
+ if algo==b("DES-CBC"):
+ # This is EVP_BytesToKey in OpenSSL
+ key = PBKDF1(passphrase, salt, 8, 1, Crypto.Hash.MD5)
+ keyobj = DES.new(key, Crypto.Cipher.DES.MODE_CBC, salt)
+ elif algo==b("DES-EDE3-CBC"):
+ # Note that EVP_BytesToKey is note exactly the same as PBKDF1
+ key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
+ key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
+ keyobj = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
+ else:
+ raise ValueError("Unsupport PEM encryption algorithm.")
+ lines = lines[2:]
+
+ der = binascii.a2b_base64(b('').join(lines[1:-1]))
+ if keyobj:
+ der = keyobj.decrypt(der)
+ padding = bord(der[-1])
+ der = der[:-padding]
+ return self._importKeyDER(der)
+
+ if externKey.startswith(b('ssh-rsa ')):
+ # This is probably an OpenSSH key
+ keystring = binascii.a2b_base64(externKey.split(b(' '))[1])
+ keyparts = []
+ while len(keystring)>4:
+ l = struct.unpack(">I",keystring[:4])[0]
+ keyparts.append(keystring[4:4+l])
+ keystring = keystring[4+l:]
+ e = bytes_to_long(keyparts[1])
+ n = bytes_to_long(keyparts[2])
+ return self.construct([n, e])
+ if bord(externKey[0])==0x30:
+ # This is probably a DER encoded key
+ return self._importKeyDER(externKey)
+
+ raise ValueError("RSA key format is not supported")
+
+#: This is the ASN.1 DER object that qualifies an algorithm as
+#: compliant to PKCS#1 (that is, the standard RSA).
+# It is found in all 'algorithm' fields (also called 'algorithmIdentifier').
+# It is a SEQUENCE with the oid assigned to RSA and with its parameters (none).
+# 0x06 0x09 OBJECT IDENTIFIER, 9 bytes of payload
+# 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01
+# rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1)
+# 0x05 0x00 NULL
+algorithmIdentifier = DerSequence(
+ [ b('\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01'),
+ DerNull().encode() ]
+ ).encode()
+
+_impl = RSAImplementation()
+#:
+#: Randomly generate a fresh, new RSA key object.
+#:
+#: See `RSAImplementation.generate`.
+#:
+generate = _impl.generate
+#:
+#: Construct an RSA key object from a tuple of valid RSA components.
+#:
+#: See `RSAImplementation.construct`.
+#:
+construct = _impl.construct
+#:
+#: Import an RSA key (public or private half), encoded in standard form.
+#:
+#: See `RSAImplementation.importKey`.
+#:
+importKey = _impl.importKey
+error = _impl.error
+
+# vim:set ts=4 sw=4 sts=4 expandtab:
+