summaryrefslogtreecommitdiffstats
path: root/lib/Python/Lib/Crypto/PublicKey/ElGamal.py
diff options
context:
space:
mode:
authorGravatar Walter Purcaro <vuolter@users.noreply.github.com> 2015-05-12 14:07:48 +0200
committerGravatar Walter Purcaro <vuolter@users.noreply.github.com> 2015-05-12 14:07:48 +0200
commit5d86cfd98437eaa2b84b07ba19d51d50d64bc53f (patch)
tree735c4b2445a274be1440b75c7733d2805ff24307 /lib/Python/Lib/Crypto/PublicKey/ElGamal.py
parentOther import fixes (2) (diff)
downloadpyload-5d86cfd98437eaa2b84b07ba19d51d50d64bc53f.tar.xz
Missing optional lib
Diffstat (limited to 'lib/Python/Lib/Crypto/PublicKey/ElGamal.py')
-rw-r--r--lib/Python/Lib/Crypto/PublicKey/ElGamal.py373
1 files changed, 373 insertions, 0 deletions
diff --git a/lib/Python/Lib/Crypto/PublicKey/ElGamal.py b/lib/Python/Lib/Crypto/PublicKey/ElGamal.py
new file mode 100644
index 000000000..99af71c44
--- /dev/null
+++ b/lib/Python/Lib/Crypto/PublicKey/ElGamal.py
@@ -0,0 +1,373 @@
+#
+# ElGamal.py : ElGamal encryption/decryption and signatures
+#
+# Part of the Python Cryptography Toolkit
+#
+# Originally written by: A.M. Kuchling
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""ElGamal public-key algorithm (randomized encryption and signature).
+
+Signature algorithm
+-------------------
+The security of the ElGamal signature scheme is based (like DSA) on the discrete
+logarithm problem (DLP_). Given a cyclic group, a generator *g*,
+and an element *h*, it is hard to find an integer *x* such that *g^x = h*.
+
+The group is the largest multiplicative sub-group of the integers modulo *p*,
+with *p* prime.
+The signer holds a value *x* (*0<x<p-1*) as private key, and its public
+key (*y* where *y=g^x mod p*) is distributed.
+
+The ElGamal signature is twice as big as *p*.
+
+Encryption algorithm
+--------------------
+The security of the ElGamal encryption scheme is based on the computational
+Diffie-Hellman problem (CDH_). Given a cyclic group, a generator *g*,
+and two integers *a* and *b*, it is difficult to find
+the element *g^{ab}* when only *g^a* and *g^b* are known, and not *a* and *b*.
+
+As before, the group is the largest multiplicative sub-group of the integers
+modulo *p*, with *p* prime.
+The receiver holds a value *a* (*0<a<p-1*) as private key, and its public key
+(*b* where *b*=g^a*) is given to the sender.
+
+The ElGamal ciphertext is twice as big as *p*.
+
+Domain parameters
+-----------------
+For both signature and encryption schemes, the values *(p,g)* are called
+*domain parameters*.
+They are not sensitive but must be distributed to all parties (senders and
+receivers).
+Different signers can share the same domain parameters, as can
+different recipients of encrypted messages.
+
+Security
+--------
+Both DLP and CDH problem are believed to be difficult, and they have been proved
+such (and therefore secure) for more than 30 years.
+
+The cryptographic strength is linked to the magnitude of *p*.
+In 2012, a sufficient size for *p* is deemed to be 2048 bits.
+For more information, see the most recent ECRYPT_ report.
+
+Even though ElGamal algorithms are in theory reasonably secure for new designs,
+in practice there are no real good reasons for using them.
+The signature is four times larger than the equivalent DSA, and the ciphertext
+is two times larger than the equivalent RSA.
+
+Functionality
+-------------
+This module provides facilities for generating new ElGamal keys and for constructing
+them from known components. ElGamal keys allows you to perform basic signing,
+verification, encryption, and decryption.
+
+ >>> from Crypto import Random
+ >>> from Crypto.Random import random
+ >>> from Crypto.PublicKey import ElGamal
+ >>> from Crypto.Util.number import GCD
+ >>> from Crypto.Hash import SHA
+ >>>
+ >>> message = "Hello"
+ >>> key = ElGamal.generate(1024, Random.new().read)
+ >>> h = SHA.new(message).digest()
+ >>> while 1:
+ >>> k = random.StrongRandom().randint(1,key.p-1)
+ >>> if GCD(k,key.p-1)==1: break
+ >>> sig = key.sign(h,k)
+ >>> ...
+ >>> if key.verify(h,sig):
+ >>> print "OK"
+ >>> else:
+ >>> print "Incorrect signature"
+
+.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
+.. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption
+.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
+"""
+
+__revision__ = "$Id$"
+
+__all__ = ['generate', 'construct', 'error', 'ElGamalobj']
+
+from Crypto.PublicKey.pubkey import *
+from Crypto.Util import number
+
+class error (Exception):
+ pass
+
+# Generate an ElGamal key with N bits
+def generate(bits, randfunc, progress_func=None):
+ """Randomly generate a fresh, new ElGamal key.
+
+ The key will be safe for use for both encryption and signature
+ (although it should be used for **only one** purpose).
+
+ :Parameters:
+ bits : int
+ Key length, or size (in bits) of the modulus *p*.
+ Recommended value is 2048.
+ randfunc : callable
+ Random number generation function; it should accept
+ a single integer N and return a string of random data
+ N bytes long.
+ progress_func : callable
+ Optional function that will be called with a short string
+ containing the key parameter currently being generated;
+ it's useful for interactive applications where a user is
+ waiting for a key to be generated.
+
+ :attention: You should always use a cryptographically secure random number generator,
+ such as the one defined in the ``Crypto.Random`` module; **don't** just use the
+ current time and the ``random`` module.
+
+ :Return: An ElGamal key object (`ElGamalobj`).
+ """
+ obj=ElGamalobj()
+ # Generate a safe prime p
+ # See Algorithm 4.86 in Handbook of Applied Cryptography
+ if progress_func:
+ progress_func('p\n')
+ while 1:
+ q = bignum(getPrime(bits-1, randfunc))
+ obj.p = 2*q+1
+ if number.isPrime(obj.p, randfunc=randfunc):
+ break
+ # Generate generator g
+ # See Algorithm 4.80 in Handbook of Applied Cryptography
+ # Note that the order of the group is n=p-1=2q, where q is prime
+ if progress_func:
+ progress_func('g\n')
+ while 1:
+ # We must avoid g=2 because of Bleichenbacher's attack described
+ # in "Generating ElGamal signatures without knowning the secret key",
+ # 1996
+ #
+ obj.g = number.getRandomRange(3, obj.p, randfunc)
+ safe = 1
+ if pow(obj.g, 2, obj.p)==1:
+ safe=0
+ if safe and pow(obj.g, q, obj.p)==1:
+ safe=0
+ # Discard g if it divides p-1 because of the attack described
+ # in Note 11.67 (iii) in HAC
+ if safe and divmod(obj.p-1, obj.g)[1]==0:
+ safe=0
+ # g^{-1} must not divide p-1 because of Khadir's attack
+ # described in "Conditions of the generator for forging ElGamal
+ # signature", 2011
+ ginv = number.inverse(obj.g, obj.p)
+ if safe and divmod(obj.p-1, ginv)[1]==0:
+ safe=0
+ if safe:
+ break
+ # Generate private key x
+ if progress_func:
+ progress_func('x\n')
+ obj.x=number.getRandomRange(2, obj.p-1, randfunc)
+ # Generate public key y
+ if progress_func:
+ progress_func('y\n')
+ obj.y = pow(obj.g, obj.x, obj.p)
+ return obj
+
+def construct(tup):
+ """Construct an ElGamal key from a tuple of valid ElGamal components.
+
+ The modulus *p* must be a prime.
+
+ The following conditions must apply:
+
+ - 1 < g < p-1
+ - g^{p-1} = 1 mod p
+ - 1 < x < p-1
+ - g^x = y mod p
+
+ :Parameters:
+ tup : tuple
+ A tuple of long integers, with 3 or 4 items
+ in the following order:
+
+ 1. Modulus (*p*).
+ 2. Generator (*g*).
+ 3. Public key (*y*).
+ 4. Private key (*x*). Optional.
+
+ :Return: An ElGamal key object (`ElGamalobj`).
+ """
+
+ obj=ElGamalobj()
+ if len(tup) not in [3,4]:
+ raise ValueError('argument for construct() wrong length')
+ for i in range(len(tup)):
+ field = obj.keydata[i]
+ setattr(obj, field, tup[i])
+ return obj
+
+class ElGamalobj(pubkey):
+ """Class defining an ElGamal key.
+
+ :undocumented: __getstate__, __setstate__, __repr__, __getattr__
+ """
+
+ #: Dictionary of ElGamal parameters.
+ #:
+ #: A public key will only have the following entries:
+ #:
+ #: - **y**, the public key.
+ #: - **g**, the generator.
+ #: - **p**, the modulus.
+ #:
+ #: A private key will also have:
+ #:
+ #: - **x**, the private key.
+ keydata=['p', 'g', 'y', 'x']
+
+ def encrypt(self, plaintext, K):
+ """Encrypt a piece of data with ElGamal.
+
+ :Parameter plaintext: The piece of data to encrypt with ElGamal.
+ It must be numerically smaller than the module (*p*).
+ :Type plaintext: byte string or long
+
+ :Parameter K: A secret number, chosen randomly in the closed
+ range *[1,p-2]*.
+ :Type K: long (recommended) or byte string (not recommended)
+
+ :Return: A tuple with two items. Each item is of the same type as the
+ plaintext (string or long).
+
+ :attention: selection of *K* is crucial for security. Generating a
+ random number larger than *p-1* and taking the modulus by *p-1* is
+ **not** secure, since smaller values will occur more frequently.
+ Generating a random number systematically smaller than *p-1*
+ (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
+ In general, it shall not be possible for an attacker to know
+ the value of any bit of K.
+
+ :attention: The number *K* shall not be reused for any other
+ operation and shall be discarded immediately.
+ """
+ return pubkey.encrypt(self, plaintext, K)
+
+ def decrypt(self, ciphertext):
+ """Decrypt a piece of data with ElGamal.
+
+ :Parameter ciphertext: The piece of data to decrypt with ElGamal.
+ :Type ciphertext: byte string, long or a 2-item tuple as returned
+ by `encrypt`
+
+ :Return: A byte string if ciphertext was a byte string or a tuple
+ of byte strings. A long otherwise.
+ """
+ return pubkey.decrypt(self, ciphertext)
+
+ def sign(self, M, K):
+ """Sign a piece of data with ElGamal.
+
+ :Parameter M: The piece of data to sign with ElGamal. It may
+ not be longer in bit size than *p-1*.
+ :Type M: byte string or long
+
+ :Parameter K: A secret number, chosen randomly in the closed
+ range *[1,p-2]* and such that *gcd(k,p-1)=1*.
+ :Type K: long (recommended) or byte string (not recommended)
+
+ :attention: selection of *K* is crucial for security. Generating a
+ random number larger than *p-1* and taking the modulus by *p-1* is
+ **not** secure, since smaller values will occur more frequently.
+ Generating a random number systematically smaller than *p-1*
+ (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
+ In general, it shall not be possible for an attacker to know
+ the value of any bit of K.
+
+ :attention: The number *K* shall not be reused for any other
+ operation and shall be discarded immediately.
+
+ :attention: M must be be a cryptographic hash, otherwise an
+ attacker may mount an existential forgery attack.
+
+ :Return: A tuple with 2 longs.
+ """
+ return pubkey.sign(self, M, K)
+
+ def verify(self, M, signature):
+ """Verify the validity of an ElGamal signature.
+
+ :Parameter M: The expected message.
+ :Type M: byte string or long
+
+ :Parameter signature: The ElGamal signature to verify.
+ :Type signature: A tuple with 2 longs as return by `sign`
+
+ :Return: True if the signature is correct, False otherwise.
+ """
+ return pubkey.verify(self, M, signature)
+
+ def _encrypt(self, M, K):
+ a=pow(self.g, K, self.p)
+ b=( M*pow(self.y, K, self.p) ) % self.p
+ return ( a,b )
+
+ def _decrypt(self, M):
+ if (not hasattr(self, 'x')):
+ raise TypeError('Private key not available in this object')
+ ax=pow(M[0], self.x, self.p)
+ plaintext=(M[1] * inverse(ax, self.p ) ) % self.p
+ return plaintext
+
+ def _sign(self, M, K):
+ if (not hasattr(self, 'x')):
+ raise TypeError('Private key not available in this object')
+ p1=self.p-1
+ if (GCD(K, p1)!=1):
+ raise ValueError('Bad K value: GCD(K,p-1)!=1')
+ a=pow(self.g, K, self.p)
+ t=(M-self.x*a) % p1
+ while t<0: t=t+p1
+ b=(t*inverse(K, p1)) % p1
+ return (a, b)
+
+ def _verify(self, M, sig):
+ if sig[0]<1 or sig[0]>self.p-1:
+ return 0
+ v1=pow(self.y, sig[0], self.p)
+ v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
+ v2=pow(self.g, M, self.p)
+ if v1==v2:
+ return 1
+ return 0
+
+ def size(self):
+ return number.size(self.p) - 1
+
+ def has_private(self):
+ if hasattr(self, 'x'):
+ return 1
+ else:
+ return 0
+
+ def publickey(self):
+ return construct((self.p, self.g, self.y))
+
+
+object=ElGamalobj