diff options
author | Walter Purcaro <vuolter@users.noreply.github.com> | 2015-05-12 14:07:48 +0200 |
---|---|---|
committer | Walter Purcaro <vuolter@users.noreply.github.com> | 2015-05-12 14:07:48 +0200 |
commit | 5d86cfd98437eaa2b84b07ba19d51d50d64bc53f (patch) | |
tree | 735c4b2445a274be1440b75c7733d2805ff24307 /lib/Python/Lib/Crypto/PublicKey/ElGamal.py | |
parent | Other import fixes (2) (diff) | |
download | pyload-5d86cfd98437eaa2b84b07ba19d51d50d64bc53f.tar.xz |
Missing optional lib
Diffstat (limited to 'lib/Python/Lib/Crypto/PublicKey/ElGamal.py')
-rw-r--r-- | lib/Python/Lib/Crypto/PublicKey/ElGamal.py | 373 |
1 files changed, 373 insertions, 0 deletions
diff --git a/lib/Python/Lib/Crypto/PublicKey/ElGamal.py b/lib/Python/Lib/Crypto/PublicKey/ElGamal.py new file mode 100644 index 000000000..99af71c44 --- /dev/null +++ b/lib/Python/Lib/Crypto/PublicKey/ElGamal.py @@ -0,0 +1,373 @@ +# +# ElGamal.py : ElGamal encryption/decryption and signatures +# +# Part of the Python Cryptography Toolkit +# +# Originally written by: A.M. Kuchling +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +"""ElGamal public-key algorithm (randomized encryption and signature). + +Signature algorithm +------------------- +The security of the ElGamal signature scheme is based (like DSA) on the discrete +logarithm problem (DLP_). Given a cyclic group, a generator *g*, +and an element *h*, it is hard to find an integer *x* such that *g^x = h*. + +The group is the largest multiplicative sub-group of the integers modulo *p*, +with *p* prime. +The signer holds a value *x* (*0<x<p-1*) as private key, and its public +key (*y* where *y=g^x mod p*) is distributed. + +The ElGamal signature is twice as big as *p*. + +Encryption algorithm +-------------------- +The security of the ElGamal encryption scheme is based on the computational +Diffie-Hellman problem (CDH_). Given a cyclic group, a generator *g*, +and two integers *a* and *b*, it is difficult to find +the element *g^{ab}* when only *g^a* and *g^b* are known, and not *a* and *b*. + +As before, the group is the largest multiplicative sub-group of the integers +modulo *p*, with *p* prime. +The receiver holds a value *a* (*0<a<p-1*) as private key, and its public key +(*b* where *b*=g^a*) is given to the sender. + +The ElGamal ciphertext is twice as big as *p*. + +Domain parameters +----------------- +For both signature and encryption schemes, the values *(p,g)* are called +*domain parameters*. +They are not sensitive but must be distributed to all parties (senders and +receivers). +Different signers can share the same domain parameters, as can +different recipients of encrypted messages. + +Security +-------- +Both DLP and CDH problem are believed to be difficult, and they have been proved +such (and therefore secure) for more than 30 years. + +The cryptographic strength is linked to the magnitude of *p*. +In 2012, a sufficient size for *p* is deemed to be 2048 bits. +For more information, see the most recent ECRYPT_ report. + +Even though ElGamal algorithms are in theory reasonably secure for new designs, +in practice there are no real good reasons for using them. +The signature is four times larger than the equivalent DSA, and the ciphertext +is two times larger than the equivalent RSA. + +Functionality +------------- +This module provides facilities for generating new ElGamal keys and for constructing +them from known components. ElGamal keys allows you to perform basic signing, +verification, encryption, and decryption. + + >>> from Crypto import Random + >>> from Crypto.Random import random + >>> from Crypto.PublicKey import ElGamal + >>> from Crypto.Util.number import GCD + >>> from Crypto.Hash import SHA + >>> + >>> message = "Hello" + >>> key = ElGamal.generate(1024, Random.new().read) + >>> h = SHA.new(message).digest() + >>> while 1: + >>> k = random.StrongRandom().randint(1,key.p-1) + >>> if GCD(k,key.p-1)==1: break + >>> sig = key.sign(h,k) + >>> ... + >>> if key.verify(h,sig): + >>> print "OK" + >>> else: + >>> print "Incorrect signature" + +.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf +.. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption +.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf +""" + +__revision__ = "$Id$" + +__all__ = ['generate', 'construct', 'error', 'ElGamalobj'] + +from Crypto.PublicKey.pubkey import * +from Crypto.Util import number + +class error (Exception): + pass + +# Generate an ElGamal key with N bits +def generate(bits, randfunc, progress_func=None): + """Randomly generate a fresh, new ElGamal key. + + The key will be safe for use for both encryption and signature + (although it should be used for **only one** purpose). + + :Parameters: + bits : int + Key length, or size (in bits) of the modulus *p*. + Recommended value is 2048. + randfunc : callable + Random number generation function; it should accept + a single integer N and return a string of random data + N bytes long. + progress_func : callable + Optional function that will be called with a short string + containing the key parameter currently being generated; + it's useful for interactive applications where a user is + waiting for a key to be generated. + + :attention: You should always use a cryptographically secure random number generator, + such as the one defined in the ``Crypto.Random`` module; **don't** just use the + current time and the ``random`` module. + + :Return: An ElGamal key object (`ElGamalobj`). + """ + obj=ElGamalobj() + # Generate a safe prime p + # See Algorithm 4.86 in Handbook of Applied Cryptography + if progress_func: + progress_func('p\n') + while 1: + q = bignum(getPrime(bits-1, randfunc)) + obj.p = 2*q+1 + if number.isPrime(obj.p, randfunc=randfunc): + break + # Generate generator g + # See Algorithm 4.80 in Handbook of Applied Cryptography + # Note that the order of the group is n=p-1=2q, where q is prime + if progress_func: + progress_func('g\n') + while 1: + # We must avoid g=2 because of Bleichenbacher's attack described + # in "Generating ElGamal signatures without knowning the secret key", + # 1996 + # + obj.g = number.getRandomRange(3, obj.p, randfunc) + safe = 1 + if pow(obj.g, 2, obj.p)==1: + safe=0 + if safe and pow(obj.g, q, obj.p)==1: + safe=0 + # Discard g if it divides p-1 because of the attack described + # in Note 11.67 (iii) in HAC + if safe and divmod(obj.p-1, obj.g)[1]==0: + safe=0 + # g^{-1} must not divide p-1 because of Khadir's attack + # described in "Conditions of the generator for forging ElGamal + # signature", 2011 + ginv = number.inverse(obj.g, obj.p) + if safe and divmod(obj.p-1, ginv)[1]==0: + safe=0 + if safe: + break + # Generate private key x + if progress_func: + progress_func('x\n') + obj.x=number.getRandomRange(2, obj.p-1, randfunc) + # Generate public key y + if progress_func: + progress_func('y\n') + obj.y = pow(obj.g, obj.x, obj.p) + return obj + +def construct(tup): + """Construct an ElGamal key from a tuple of valid ElGamal components. + + The modulus *p* must be a prime. + + The following conditions must apply: + + - 1 < g < p-1 + - g^{p-1} = 1 mod p + - 1 < x < p-1 + - g^x = y mod p + + :Parameters: + tup : tuple + A tuple of long integers, with 3 or 4 items + in the following order: + + 1. Modulus (*p*). + 2. Generator (*g*). + 3. Public key (*y*). + 4. Private key (*x*). Optional. + + :Return: An ElGamal key object (`ElGamalobj`). + """ + + obj=ElGamalobj() + if len(tup) not in [3,4]: + raise ValueError('argument for construct() wrong length') + for i in range(len(tup)): + field = obj.keydata[i] + setattr(obj, field, tup[i]) + return obj + +class ElGamalobj(pubkey): + """Class defining an ElGamal key. + + :undocumented: __getstate__, __setstate__, __repr__, __getattr__ + """ + + #: Dictionary of ElGamal parameters. + #: + #: A public key will only have the following entries: + #: + #: - **y**, the public key. + #: - **g**, the generator. + #: - **p**, the modulus. + #: + #: A private key will also have: + #: + #: - **x**, the private key. + keydata=['p', 'g', 'y', 'x'] + + def encrypt(self, plaintext, K): + """Encrypt a piece of data with ElGamal. + + :Parameter plaintext: The piece of data to encrypt with ElGamal. + It must be numerically smaller than the module (*p*). + :Type plaintext: byte string or long + + :Parameter K: A secret number, chosen randomly in the closed + range *[1,p-2]*. + :Type K: long (recommended) or byte string (not recommended) + + :Return: A tuple with two items. Each item is of the same type as the + plaintext (string or long). + + :attention: selection of *K* is crucial for security. Generating a + random number larger than *p-1* and taking the modulus by *p-1* is + **not** secure, since smaller values will occur more frequently. + Generating a random number systematically smaller than *p-1* + (e.g. *floor((p-1)/8)* random bytes) is also **not** secure. + In general, it shall not be possible for an attacker to know + the value of any bit of K. + + :attention: The number *K* shall not be reused for any other + operation and shall be discarded immediately. + """ + return pubkey.encrypt(self, plaintext, K) + + def decrypt(self, ciphertext): + """Decrypt a piece of data with ElGamal. + + :Parameter ciphertext: The piece of data to decrypt with ElGamal. + :Type ciphertext: byte string, long or a 2-item tuple as returned + by `encrypt` + + :Return: A byte string if ciphertext was a byte string or a tuple + of byte strings. A long otherwise. + """ + return pubkey.decrypt(self, ciphertext) + + def sign(self, M, K): + """Sign a piece of data with ElGamal. + + :Parameter M: The piece of data to sign with ElGamal. It may + not be longer in bit size than *p-1*. + :Type M: byte string or long + + :Parameter K: A secret number, chosen randomly in the closed + range *[1,p-2]* and such that *gcd(k,p-1)=1*. + :Type K: long (recommended) or byte string (not recommended) + + :attention: selection of *K* is crucial for security. Generating a + random number larger than *p-1* and taking the modulus by *p-1* is + **not** secure, since smaller values will occur more frequently. + Generating a random number systematically smaller than *p-1* + (e.g. *floor((p-1)/8)* random bytes) is also **not** secure. + In general, it shall not be possible for an attacker to know + the value of any bit of K. + + :attention: The number *K* shall not be reused for any other + operation and shall be discarded immediately. + + :attention: M must be be a cryptographic hash, otherwise an + attacker may mount an existential forgery attack. + + :Return: A tuple with 2 longs. + """ + return pubkey.sign(self, M, K) + + def verify(self, M, signature): + """Verify the validity of an ElGamal signature. + + :Parameter M: The expected message. + :Type M: byte string or long + + :Parameter signature: The ElGamal signature to verify. + :Type signature: A tuple with 2 longs as return by `sign` + + :Return: True if the signature is correct, False otherwise. + """ + return pubkey.verify(self, M, signature) + + def _encrypt(self, M, K): + a=pow(self.g, K, self.p) + b=( M*pow(self.y, K, self.p) ) % self.p + return ( a,b ) + + def _decrypt(self, M): + if (not hasattr(self, 'x')): + raise TypeError('Private key not available in this object') + ax=pow(M[0], self.x, self.p) + plaintext=(M[1] * inverse(ax, self.p ) ) % self.p + return plaintext + + def _sign(self, M, K): + if (not hasattr(self, 'x')): + raise TypeError('Private key not available in this object') + p1=self.p-1 + if (GCD(K, p1)!=1): + raise ValueError('Bad K value: GCD(K,p-1)!=1') + a=pow(self.g, K, self.p) + t=(M-self.x*a) % p1 + while t<0: t=t+p1 + b=(t*inverse(K, p1)) % p1 + return (a, b) + + def _verify(self, M, sig): + if sig[0]<1 or sig[0]>self.p-1: + return 0 + v1=pow(self.y, sig[0], self.p) + v1=(v1*pow(sig[0], sig[1], self.p)) % self.p + v2=pow(self.g, M, self.p) + if v1==v2: + return 1 + return 0 + + def size(self): + return number.size(self.p) - 1 + + def has_private(self): + if hasattr(self, 'x'): + return 1 + else: + return 0 + + def publickey(self): + return construct((self.p, self.g, self.y)) + + +object=ElGamalobj |